• Title/Summary/Keyword: Water transfer

Search Result 2,568, Processing Time 0.037 seconds

An Experimental Study on Cooling Characteristics of Mist Impinging Jet on a Flat Plate (평판에 분사된 분무충돌제트의 냉각특성에 대한 실험적 연구)

  • Jun, Snag-Uk;Jung, Won-Seok;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.511-517
    • /
    • 2003
  • An experiment is conducted to investigate the effect of air and water mass flow rates on cooling characteristics of mist impinging jet on a flat plate. The air mass flow rate ranges from 0.0 to 3.0 g/s, and water mass flow rates from 5.0 to 20.0 g/s. An air-atomizing nozzle is used fur the purpose of controlling air and water mass flow rates. The test section is designed distinctively from previous works to obtain local heat transfer coefficient distributions. Heat transfer characteristics of the mist impinging jet are explained with the aid of flow visualization. Surface temperature and heat transfer coefficient distributions become more uniform as air mass flow rate increases. The water flow rate provides substantial contribution to enhancement of cooling performance. On the other hand, The air mass flow rate weakly influences the averaged heat transfer rate when the water mass flow rate is low, but the averaged heat transfer rate Increases remarkably with the air mass flow rate in case of the high water mass flow rate.

Air handling unit utilizing water/air direct contact heat exchanger with mesh (공기조화기내 메쉬삽입 물-공기 직접접촉의 열전달 특성 연구)

  • Jeon, Yong-Han;Mun, Myeong-Hun;Kim, Jong-Yoon;Kim, Nam-Jin;Seo, Tae-Boem;Kim, Chong-Bo
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1161-1166
    • /
    • 2008
  • The objective of this research was to investigate the enhancement of heat transfer by mesh in water/air direct contact air conditioning system. Mesh is inserted as a turbulent promoter in front of the water injection nozzle. The heat transfer characteristics with and without mesh and the effect of the number of inserted mesh and mesh porosity size have been studied experimentally. Inserted mesh improves heat transfer efficiency compared to non-inserted mesh system and heat transfer efficiency increased as the number of mesh is increased. Meanwhile, heat transfer efficiency decreased as the porosity of the mesh is increased. With inserted mesh, inlet and outlet temperature difference of air increased more than 50%. Heat exchange time of water/air to reach the 100% humidity decreased less than 30%. This result shows inserted mesh can enhance the performance of the water/air direct contact air conditioning system.

  • PDF

Air Handling Unit Utilizing Water/Air Direct Contact Heat Exchanger with Mesh (공기조화기내 메쉬삽입 물-공기 직접접촉의 열전달 특성 연구)

  • Jeon, Yong-Han;Kim, Jong-Yoon;Kim, Nam-Jin;Seo, Tae-Boem;Kim, Chong-Bo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.1
    • /
    • pp.75-80
    • /
    • 2008
  • The objective of this research was to investigate the enhancement of heat transfer by mesh in water/air direct contact air conditioning system. Mesh is inserted as a turbulent promoter in front of the water injection nozzle. The heat transfer characteristics with and without mesh and the effect of the number of inserted mesh and mesh porosity size have been studied experimentally. Inserted mesh improves heat transfer efficiency compared to non~inserted mesh system and heat transfer efficiency increased as the number of mesh is increased. Meanwhile, heat transfer efficiency decreased as the porosity of the mesh is increased. With inserted mesh, inlet and outlet temperature difference of air increased more than 50%. Heat exchange time of water/air to reach the 100% humidity decreased less than 30%. This result shows inserted mesh can enhance the performance of the water/air direct contact air conditioning system.

MECHANISM OF NUCLEATE BOILING HEAT TRANSFER FROM WIRES IMMERSED IN SATURATED FC-72 AND WATER (전열면적 및 유체의 종류가 핵비등 열전달에 미치는 영향과 그 원인)

  • Kim, J.H.;You, S.M.;Park, J.Y.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.232-239
    • /
    • 2001
  • The present study is an experimental investigation of nucleate boiling heat transfer mechanism in pool boiling from wire heaters immersed in saturated FC-72 coolant and water. The vapor volume flow rate departing from a wire during nucleate boiling was determined by measuring the volume of bubbles, varying $25{\mu}m,\;75{\mu}m,\;and\;390{\mu}m$, from a wire utilizing the consecutive-photo method. The effects of the wire size on heat transfer mechanism during a nucleate boiling were investigated by measuring vapor volume flow rate and the frequency of bubbles departing from a wire immersed in saturated FC-72. One wire diameter of $390{\mu}m$ was selected and tested in saturated water to investigate the fluid effect on the nucleate boiling heat transfer mechanism. Results of the study showed that an increase in nucleate boiling heat transfer coefficients with reductions in wire diameter was related to the decreased latent heat contribution. The latent heat contribution of boiling heat transfer for the water test was found to be higher than that of FC-72. The frequency of departing bubbles was correlated as a function of bubble diameters.

  • PDF

A Study on the Drag Reduction Effect and Heat Transfer Enhancement of Non ionized Surfactant and Water Mixture in a Circular Pipe Flow (비이온계 계면활성제 첨가수에 대한 관내 유동저항 감소 및 열전달 촉진에 관한 연구)

  • Kim, Myoung-Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.552-557
    • /
    • 2007
  • This paper has dealt with the effect of non ionized surfactant and water mixture on drag reduction and heat transfer enhancement in a circular pipe flow with experimentally. The test section was consisted of stainless steel pipe with inside diameter of 16mm. The wire coil was used to increase heat transfer in a pipe and the on ionized surfactant(Oleyl Dihydroxyethyl Amino Oxide, ODEAO) was used to reduce the drag force of water mixture with surfactant. The main parameters of this experiment were diameter and pitch of wire coil and the ratio of test section length and horizontal wire coil length. In this experiment, the acquired results were 1) Drag reduction effect existed in this ODEAO-water mixture, 2) Friction factor and heat transfer were increased with insertion the heat transfer enhancement coil, 3) With increasing of pitch ratio, heat transfer was decreased, and 4) Heat transfer was decreased by the decreasing of inserting coil diameter.

Heat Transfer Characteristics of Plastic Particle Slurry in a Circular tube Flow (관내 유동 플라스틱 슬러리의 열전달 특성)

  • 김명환;김명준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.451-456
    • /
    • 2004
  • This present experimental study has dealt with the heat transfer characteristics of plastic particle slurry which flows in a circular tube. This type of slurry is suggested for heat transfer enhancement effect cause by random and vortex effect of plastic particle dispersed in water. As a result, the thermal boundary layer becomes thin so the heat transfer coefficient on the tube wall more increase compare to pure water flow. This experimental test section was composed with stainless pipe which has the length of 2000mm, inner pipe diameter of 14mm and outer pipe diameter of 60mm. The most effective and important parameter of this experiment is plastic packing factor(PPF). The focuses of these results are pressure drop and heat transfer coefficient. As results, the friction factor of plastic particle slurry becomes higher at laminar flow region than pure water because of buoyancy effect of plastic particle but the local heat transfer coefficient becomes higher.

Heat and Mass Transfer between Hot Waste Gas and Cold Water in a Direct Contact Heat Exchanger (직접접촉식 열교환기내에서 물과 배기가스의 직접접촉에 의한 열 및 물질전달)

  • 이금배
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1171-1178
    • /
    • 1992
  • An experiment was performed to describe the heat and mass transfer occurring between hot waste gas and cold water through direct contact in a direct contact heat exchanger. This model was then used to obtain an equation of overall heat transfer coefficent based on heat exchanger volume. The diffusion heat transfer rate is 2-3 times larger than the convection heat transfer rate as results of condensation of the water vapor contained in the waste gas. The boiler efficiency increases over 10%.

An Experimental Study on Heat Transfer Performance of Fluidized Bed Heat Exchanger for Heat Recovery from Multi-Heat Sources (다중열원 열회수형 유동층 열교환기의 전열성능에 대한 실험적 연구)

  • Park, Sang-Il;Ko, Chang-Bok;Lee, Young-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.2
    • /
    • pp.57-62
    • /
    • 2017
  • The heat transfer performance of a multi-heat-source fluidized bed heat exchanger was analyzed. The fluidized bed heat exchanger examined in this study can simultaneously recover the waste heat from gas, water vapor, and hot water. The effects of waste water flow rate, gas flow rate, and cooling water flow rate were examined to find their experimental correlations with the heat transfer coefficient. A computer program using the correlations was developed in this study to predict the thermal performance of the fluidized bed heat exchanger. The calculated heat transfer rates of gas, water vapor, waste water, and cooling water were compared with the measured values. It was found that the error of the calculated values was less than 12%.

Effect of Cooling Rate on Thermal Shock Behavior of Alumina Ceramics ($Al_2O_3$ 세라믹스 열충격에 미치는 냉각 조건의 영향)

  • 한봉석;이홍림;전명철
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.7
    • /
    • pp.767-773
    • /
    • 1997
  • Thermal shock behavior of alumina ceramics were studied by quenching the heated alumina specimen into the water of various temperatures over 0~10$0^{\circ}C$. The critical thermal shock temperature difference ( Tc) of the specimen decreased almost linearly from 275$^{\circ}C$ to 20$0^{\circ}C$ with increase in the cooling water temperature over 0~6$0^{\circ}C$. It is probably due to the increase of the maximum cooling rate which is dependent of the convection heat transfer coefficient. The convection heat transfer coefficient is a function of the temperature of the cooling water. However, the critical thermal shock temperature difference( Tc) of the specimen increased at 25$0^{\circ}C$ over 80~10$0^{\circ}C$ due to the film boiling of the cooling water. The maximum cooling rate, which brings about the maximum thermal stress of the specimen in the cooling process, was observed to increase linearly with the increase in the quenching temperature difference of the specimen due to the linear relationship of the convection heat transfer coefficient with the water temperature over 0~6$0^{\circ}C$. The critical maximum cooling rate for thermal shock fracture was observed almost constant to be about 260$\pm$1$0^{\circ}C$/s for all water temperatures over 0~6$0^{\circ}C$. Therefore, thermal shock behavior of alumina ceramics is greatly influenced by the convection heat transfer coefficient of the cooling water.

  • PDF