• Title/Summary/Keyword: Water temperature stress

Search Result 647, Processing Time 0.035 seconds

A Calculation Method of in vivo Energy Consumption in Estimation of Harvesting Date for High Potato Solids (고 고형분함량 감자의 수확시기 예측모형을 위한 식물체내 에너지 소모량 추정)

  • Jung, Jae-Youn;Suh, Sang-Gon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.4
    • /
    • pp.284-291
    • /
    • 2010
  • A simulation modeling for predicting the harvesting date with high potato solids consists of development of mathematical models. The mathematical model on potato growth and its development should be obtained by using agricultural elements which analyze relations of solar radiation quantity, temperature, photon quantity, carbon dioxide exchange rate, water stress and loss, relative humidity, light intensity, and wind etc. But more reliable way to predict harvesting date against climatic change employs in vivo energy consumption for growth and induction shape in a slight environmental adaptation. Therefore, to calculate in vivo energy loss, we take a concept of estimate of the amount of basal metabolism in each tuber on the basis of $Wm={\int}^m_tf(x)dt$ and $Tp=\frac{Tm{\cdot}Wm^{Tp}}{Wm^{Tm}}$. In the validation experiments, results of measuring solid accumulation of potato harvested at simulated date agreed fairly well with the actual measured values in each regional field during the growth period of 2005-2009. The calculation method could be used to predict an appropriate harvesting date for a production of high potato solids according to weather conditions.

Studies on the Viscometric Behavior of Mayonnaise (마요네즈의 점성(粘性)에 관(關)한 연구(硏究))

  • Lee, Yung-Yup
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.15 no.2
    • /
    • pp.119-127
    • /
    • 1986
  • The rheological properties of mayonnaise were studied with cylindrindrical viscometer. It was observed that mayonnaise showed pseudoplastic behavior, yield stress and time dependent characteristics. In the initial period of shear time, the decay of viscosity of mayonnaise was followed by a second-order kinetic equation. The influence of temperature on viscosity could be described by Arrhenius equation. The apparent viscosity of mayonnaise markedly increased with an rise in the concentration of egg yolk; and the emulsion was most stable at the concentration of 12%. At the concentration of $65{\sim}75%$ oil, the apparent viscosity was increased; the maximum value was reached at 75% oil, and above 75% oil, the remarkable decreased was observed. The size of oil drops was decreased with an increase in oil concentration of 75% oil. The apparent viscosity of mayonnaise was increased with an rise in water contents, while being decreased with one in the concentration of vinegar.

  • PDF

Numerical analysis for heat transfer and pressure drop characteristics of (다양한 배플 인자에 따른 셀-튜브 열교환기의 열전달 및 압력강하 특성에 관한 수치해석)

  • Hou, Rong-Rong;Park, Hyeong-Seon;Yoon, Jun-Kyu;Lim, Jong-Han
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.367-375
    • /
    • 2014
  • In numbers of kinds of heat exchanger, the shell-tube heat exchanger is the most commonly used type of heat exchanger in the industry field. In order to improve the thermal performance of the heat exchanger, this study was analyzed heat transfer characteristics according to arrangement of baffle and direction of baffle and bump phase of baffle about shell-tube heat exchanger using appropriate SST (Shear Stress Transport) turbulence model for flow separation and boundary layer analysis. As the boundary condition for CFD (Computational Fluid Dynamics) analysis, the inlet temperature of shell side was constantly 344 K and the variation of the water flow rate was 6, 12, 18 and 24 l/min. As the result of analysis, zigzag baffle arrangement enhances heat transfer rate and pressure drop. Furthermore, in the direction of the baffle, heat transfer rate is more improved with vertical type and angle $45^{\circ}$ type than existing type, and pressure drop was little difference. Also, the bump shape of baffle surface contributes to heat transfer rate and pressure drop improvement due to the increased heat transfer area. Through analysis results, we knew that the increase of the heat transfer was influenced by flow separation, fluid residual time, contact area with the tube, flow rate, swirl and so on.

Evaluation of Modified Soil-Plant-Atmosphere Model (mSPA) to Simulate Net Ecosystem Carbon Exchange Over a Deciduous Forest at Gwangneung in 2006 (2006년 광릉 활엽수림에서 순 생태계 탄소 교환량의 모의에 대한 modified Soil-Plant-Atmosphere (mSPA) 모델의 평가)

  • Lee, Young-Hee;Lim, Hee-Jeong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.3
    • /
    • pp.87-99
    • /
    • 2009
  • We evaluated modified Soil-Plant-Atmosphere model's performance to simulate the seasonal variation of net ecosystem exchange (NEE) of carbon and examined the critical controlling mechanism on carbon exchange using the model over a deciduous forest at Gwangnung in 2006. The modified Soil-Plant-Atmosphere (mSPA) model was calibrated to capture the mean NEE during the daytime (1000-1400 LST) and used to simulate gross primary productivity (GPP). Ecosystem respiration ($R_e$) has been estimated using an empirical formula developed at this site. The simulation results indicated that the daytime mean stomatal conductance was highly correlated with daily insolation in the summer. Low stomatal conductance in high insolation occurred on the days with low temperature rather than with high vapor pressure deficit. It suggests that the forest rarely experienced water stress in the summer of 2006. The model captured the observed bimodal seasonal variation with a mid-season depression of carbon uptake. The model estimates of annual GPP, $R_e$ and NEE were $964\;gC\;m^{-2}\;yr^{-1}$, $733\;gC\;m^{-2}\;yr^{-1}$, and $-231\;gCm\;^{-2}\;yr^{-1}$, respectively. Compared to the observed annual NEE, the modeled estimates showed more carbon uptake by about $140\;gC\;m^{-2}\;yr^{-1}$. The uncertainty of the estimate of annual NEE in a complex terrain is discussed.

Analysis of Relationship between Tomato Growth, Vital Response, and Plant-induced Electrical Signal in a Plastic Greenhouse due to Carbon Dioxide Enrichment Treatment (플라스틱 온실 내 이산화탄소 시비에 따른 토마토 생육과 생체 반응 및 Plant-induced Electrical Signal 간 관계 분석)

  • Hee Woong Goo;Gyu Won Lee;Wook Jin Song;Do Hyeon Kim;Hyun Jun Park;Kyoung Sub Park
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.484-491
    • /
    • 2023
  • Tomatoes in greenhouse are a widely cultivated horticultural crop worldwide, accounting for high production and production value. When greenhouse ventilation is minimized during low temperature periods, CO2 enrichment is often used to increase tomato photosynthetic rate and yield. Plant-induced electrical signal (PIES) can be used as a technology to monitor changes in the biological response of crops due to environmental changes by using the principle of measuring the resistance value, or impedance, within the crop. This study was conducted to investigate the relationship between tomato growth data, vital response, and PIES resulting from CO2 enrichment in greenhouse tomatoes. The growth of tomato treated with CO2 enrichment in the morning was significantly better in all items except stem diameter compared to the control, and PIES values were also higher. The growth of tomato continuously applied with CO2 was better in the treatment groups than control, and there was no significant difference in chlorophyll fluorescence and photosynthesis. However, PIES and SPAD values were higher in the CO2 treatment group than control. CO2 enrichment have a direct relationship with PIES, growth increased, and transpiration increased due to the increased leaf area, resulting in increased water absorption, which appears to be reflected in PIES, which measures vascular impedance. Through this, this study suggests that PIES can be used to monitor crops due to environmental changes, and that PIES is a useful method for non-destructively and continuously monitoring changes of crops.

Calibration of crop growth model CERES-MAIZE with yield trial data (지역적응 시험 자료를 활용한 옥수수 작물모형 CERES-MAIZE의 품종모수 추정시의 문제점)

  • Kim, Junhwan;Sang, Wangyu;Shin, Pyeong;Cho, Hyeounsuk;Seo, Myungchul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.4
    • /
    • pp.277-283
    • /
    • 2018
  • The crop growth model has been widely used for climate change impact assessment. Crop growth model require genetic coefficients for simulating growth and yield. In order to determine the genetic coefficients, regional growth monitoring data or yield trial data of crops has been used to calibrate crop growth model. The aim of this study is to verify that yield trial data of corn is appropriate to calibrate genetic coefficients of CERES-MAIZE. Field experiment sites were Suwon, Jinju, Daegu and Changwon. The distance from the weather station to the experimental field were from 1.3km to 27km. Genetic coefficients calibrated by yield trial data showed good performance in silking day. The genetic coefficients associated with silking are determined only by temperature. In CERES-MAIZE model, precipitation or irrigation does not have a significant effect on phenology related genetic coefficients. Although the effective distance of the temperature could vary depending on the terrain, reliable genetic coefficients were obtained in this study even when a weather observation site was within a maximum of 27 km. Therefore, it is possible to estimate the genetic coefficients by yield trial data in study area. However, the yield-related genetic coefficients did not show good results. These results were caused by simulating the water stress without accurate information on irrigation or rainfall. The yield trial reports have not had accurate information on irrigation timing and volume. In order to obtain significant precipitation data, the distance between experimental field and weather station should be closer to that of the temperature measurement. However, the experimental fields in this study was not close enough to the weather station. Therefore, When determining the genetic coefficients of regional corn yield trial data, it may be appropriate to calibrate only genetic coefficients related to phenology.

Determining Spatial and Temporal Variations of Surface Particulate Organic Carbon (POC) using in situ Measurements and Remote Sensing Data in the Northeastern Gulf of Mexico during El $Ni\tilde{n}o$ and La $Ni\tilde{n}a$ (현장관측 및 원격탐사 자료를 이용한 북동 멕시코 만에서 El $Ni\tilde{n}o$와 La $Ni\tilde{n}a$ 기간 동안 표층 입자성 유기탄소의 시/공간적 변화 연구)

  • Son, Young-Baek;Gardner, Wilford D.
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.2
    • /
    • pp.51-61
    • /
    • 2010
  • Surface particulate organic carbon (POC) concentration was measured in the Northeastern Gulf of Mexico on 9 cruises from November 1997 to August 2000 to investigate the seasonal and spatial variability related to synchronous remote sensing data (Sea-viewing Wide Field-of-view Sensor (SeaWiFS), sea surface temperature (SST), sea surface height anomaly (SSHA), and sea surface wind (SSW)) and recorded river discharge data. Surface POC concentrations have higher values (>100 $mg/m^3$) on the inner shelf and near the Mississippi Delta, and decrease across the shelf and slope. The inter-annual variations of surface POC concentrations are relatively higher during 1997 and 1998 (El Nino) than during 1999 and 2000 (La Nina) in the study area. This phenomenon is directly related to the output of Mississippi River and other major rivers, which associated with global climate change such as ENSO events. Although highest river runoff into the northern Gulf of Mexico Coast occurs in early spring and lowest flow in late summer and fall, wide-range POC plumes are observed during the summer cruises and lower concentrations and narrow dispersion of POC during the spring and fall cruises. During the summer seasons, the river discharge remarkably decreases compared to the spring, but increasing temperature causes strong stratification of the water column and increasing buoyancy in near-surface waters. Low-density plumes containing higher POC concentrations extend out over the shelf and slope with spatial patterns and controlled by the Loop Current and eddies, which dominate offshore circulation. Although river discharge is normal or abnormal during the spring and fall seasons, increasing wind stress and decreasing temperature cause vertical mixing, with higher surface POC concentrations confined to the inner shelf.

In Vitro Anticancer and Antioxidant Effect of Solvent Extracts from Tuna Dried at Low Temperature Vacuum. (저온진공건조 참치추출물의 in vitro 항암 및 항산화 효과)

  • Jang, Joo-Ri;Kim, Kyung-Kun;Mun, Soo-Beom;Lim, Sun-Young
    • Journal of Life Science
    • /
    • v.19 no.5
    • /
    • pp.633-638
    • /
    • 2009
  • We investigated the inhibitory effects of solvent extracts from dried tuna on the growth of cancer cell lines (HT1080 human fibrosarcoma and HT-29 human colon cancer cells) and $H_2O_2$-induced oxidative stress. Inhibitory effects of acetone with methylene chloride (A+M) and methanol (MeOH) extracts on the growth of HT1080 and HT-29 cancer cells increased in a dose dependent manner (p<0.05). The inhibitory effect was more significant on the growth of HT1080 cells, and A+M extracts had a higher inhibitory effect compared to MeOH extracts. The treatments of hexane, 85% aq. methanol, butanol and water fractions significantly inhibited the growth of both cancer cells (p<0.05). Among the fractions, hexane and 85% aq. methanol fractions showed higher inhibitory effects. In order to determine the protective effect on $H_2O_2$-induced oxidative stress, a DCHF-DA (dichlorodihydrofluorescin diacetate) assay was conducted. All fractions, including crude extracts of dried tuna, appeared to significantly reduce the levels of intracellular reactive oxygen species (ROS) with dose responses (p<0.05). Among the fractions, BuOH and 85% methanol fractions showed a higher protective effect on the production of lipid peroxides. These results indicate that the consumption of tuna may be recommended as a potent functional food for preventing cellular oxidation and cancer.

Characteristics of Shear Strength and Elastic Waves in Artificially Frozen Specimens using Triaxial Compression Tests (삼축압축실험을 이용한 인공동결시료의 강도평가 및 탄성파 특성변화)

  • Kim, JongChan;Lee, Jong-Sub;Hong, Seung-Seo;Lee, Changho
    • The Journal of Engineering Geology
    • /
    • v.24 no.1
    • /
    • pp.111-122
    • /
    • 2014
  • For accurate laboratory evaluations of soil deposits, it is essential that the samples are undisturbed. An artificial ground-freezing system is the one of the most effective methods for obtaining undisturbed samples from sand deposits. The objective of this study is to estimate the shear strengths and the characteristics of elastic waves of frozen-thawed and unfrozen specimens through the undrained triaxial compression test. For the experiments, Jumunjin standard sands are used to prepare frozen and unfrozen specimens with similar relative densities (60% and 80%). The water pluviation method is used to simulate the fully saturated condition under the groundwater table. When thawing the frozen specimens, the temperature is measured every minute. After the specimens are completely thawed, undrained triaxial compression tests are conducted using the same procedures as for the unfrozen specimens. During the triaxial tests (saturation, consolidation, and shear phase), compressional and shear waves are measured. The results show that the freeze-thaw process has minor effects on the peak deviatoric stress and shear strength values, and that the process does not affect the internal friction angle. The compressional wave velocity increases with increasing B-value to 1800 m/s in the saturation phase, but tends to remain constant in the process of consolidation and shearing. The shear wave velocity decreases with increasing B-value in the process of saturation, but changes velocity in accordance with the change in effective stress in the processes of consolidation and shearing. The compressional wave velocity has similar values regardless of the freeze-thaw process, but values of shear wave velocity are slighly lower in frozen-thawed specimens than in unfrozen specimens. This study is a preliminary experiment for estimating the shear strength and characteristics of elastic wave velocity in undisturbed frozen specimens that have been obtained using the artificial ground-freezing method.

Effect of Electrolytic Material Feeding on Blood and Carcass Traits of Broiler under Intense Heat Condition in Summer (폭염 시 육계 출하 전 전해질 급여가 닭고기 도체 및 혈액에 미치는 영향)

  • Chae, Hyun-Seok;Choi, Hee-Chul;Na, Jae-Cheon;Kim, Min-Ji;Kang, Hwan-Ku;Kim, Dong-Wook;Kim, Ji-Hyeok;Jo, Soo-Hyun;Lee, Chong-Eon;Kim, Nam-Young;Choi, Yang-Ho;Park, Byong-Sung
    • Korean Journal of Poultry Science
    • /
    • v.39 no.3
    • /
    • pp.183-193
    • /
    • 2012
  • This study was conducted to investigate the effect of feeding the electrolytic materials on blood and carcass traits of broiler during transportation exposed under intense heat condition in summer. The broilers were selected on the day when the outside temperature was about $32^{\circ}C$ to provide heat stressed environment. Broilers reared for 33 d were selected and fed with the electrolytic materials ($NaHCO_3$, NaCl, KCl) for 2 days. Treatments were as follows; feeding the underground water for control, $NaHCO_3$ (1.0%) + NaCl (0.5%) for treament 1, KCl (0.5%) + NaCl (0.5%) for treatment 2, KCl (1.0%) + NaCl (0.5%) treatment 3, KCl (0.5%) + $NaHCO_3$ (1.0%) + NaCl (0.5%) for treatment 4 and KCl (1.0%) + $NaHCO_3$ (1.0%) + NaCl (0.5%) for treament 5. pH of chicken meat increased for treatments group of electrolytic material, especially, that of treatment 3 was highest when compared to the other treatments. The frequency rate (%) of $1^+$ quality grade were 33.3, 60.0 and 83.3% at control, treatment 3, 4 and treatment 5, respectively. Occurrence rates of PSE were 50% for control and 13.3% for treatment 5. Corticosterone increased at the post-harvest period compared to the pre-harvest period of broiler and have small disparity between pre-and post-harvest only except treatment 3 when compared to control. $pCO_2$ partial pressure of blood at the pre-harvest period was low in all treatments by heat stress, the disparity value of control was high for control, and those of treatment 4 and 5 were low compared to other treatments.