• Title/Summary/Keyword: Water system

Search Result 18,206, Processing Time 0.043 seconds

Categorization of Hazard Chemicals Potentially Discharged into Water System (수계 유출가능성이 있는 유해화학물질 분류화)

  • An, Youn-Joo;Nam, Sun-Hwa;Lee, Jae-Kwan
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.2
    • /
    • pp.247-259
    • /
    • 2008
  • The utilization of a variety of hazard chemicals bears risks to human health and ecosystem. The increasing usage of various chemicals indicates the greater emission of those chemicals to water system, and the subsequent deterioration of water quality. Water system is vulnerable to many pollutants, however, there are limitations of managing a range of hazard chemicals based on insufficient legal foundations. Therefore it is needed to select hazard chemicals that can be potentially discharged into water system, and subsequently to classify a wide range of existing chemicals for better management of those chemicals. In this study, the 259 candidate chemicals of concern were selected from the lists of the toxic released inventory chemicals (148), hazard concern candidate chemicals (106), and wastewater effluent standard candidate chemicals (116). We suggested the category 1, 2, 3 and 4 of hazard chemicals potentially discharged into water system. The assessment factors considered for the classification were hazard potential, persistence and emission to water body. This work was conducted as a part of the project entitled 'Development of integrated methodology for evaluation of water environment', and the results were used to develop the monitoring lists of hazard chemicals in four major rivers in Korea.

Water Mist Fire Suppression for Raised Subfloor Spaces

  • Kim, Woon-Hyung;Kim, James A. Milke
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.617-624
    • /
    • 1997
  • Over 100 experiments have been conducted at the University of Maryland to evaluate the performance of a water mist fire suppression system for protection of an interstitial space below a raised subfloor. Experiments are conducted as part of an ongoing research effort to compare the fire suppression capabilities of various water mist system designs in a raised subfloor space. Water mist system design parameters considered in the investigation include means of actuation, concentration of water mist required for extinguishment of fires, and delivery mechanisms of water mist within close proximity to the fire. Delivery of the required concentration of water mist within close proximity to the fire is a principal factor governing the adequacy of water mist systems. Two sets of experiments have been conducted to document the performance of water mist system designs. One set is involved in documenting the concentration of water mist as a function of position within the space. The second set of experiments is concerned with the ability of water mist system designs to control fires in the space. One result of the research is the assessment of the ability of a water mist system to control fires at particular locations as a function of water mist density at that location.

  • PDF

Study in the integrated watershade management for conservation of water resources(I) - Water Quality distribution and Environmental capacity of the Samchog Buk stream, Oship stream, Gagog stream nearby eastern coastal - (수자원 보전을 위한 유역통합관리 방안에 관한 연구(I) - 동해안 유역의 북천, 오십천, 가곡천 수계의 수질 및 환경용량 평가)

  • 허인량;정의호;권재혁
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.2
    • /
    • pp.51-60
    • /
    • 2002
  • Concerning the water quality management plan about Buk-stream, Ohsip-stream and Gagok-stream water systems in this research, which objectives of abstract is as follows. The result of cleanness degree evaluation of water quality in this research, the first grade was 91% shared in Buk-stream water system. The most point of the middle and upper stream of Buk-stream was maintain extremely clean water quality. Among the researched water system, the first grade of water quality in Ohsip-stream water system was most poor, its first garde rate was 68%. In all water quality check point of Gagog-stream water system was accomplished extremely clean water quality condition of first grade of BOD. The calculation result of pollutant loading density, which were 8.2, 21.5, 4.0kg/day.$\textrm{km}^2$. respectively and basin of Buk-stream and Gagok-Stream have high development potentiality.

Study on Current and Water Quality Characteristics in Yongil Bay (영일만내의 유동과 수질특성에 관한 연구)

  • 김헌덕;김종인;류청로
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.28-37
    • /
    • 2001
  • The water quality in Yongil Bay is getting worse due to the sewage and the waste water from the surrounding industrial complex. The study aims to simulate the current system that is necessary to build ecosystem model for the optium water quality control and clarify the correlation of current system characteristics with water quality in Yongil Bay. To clarify the characteristics of coastal water movement system and verify the applicability of the 3-D model, the current system was simulated using 3-D model baroclinic model which considers tidal current and density effects. As the results of numerical experiments, it is proved the 3-D model is the most applicable on appearing the current system of the stratificated Yongil Bay difference of density. Form the results of simulation considered tidal current only, it can be clarified that the water body flows in the inner bay through the bottom layer and flows out the outer bay through the surface layer in Yongil Bay. And the fresh water from the Hyongsan river and the thermal discharge form POSCO have a little effect on the current system in Yongil Bay, but the diffusion of heat and salt has an important effect upon the formation of the density stratification of the water quality distribution is closely related with the current structure characteristics as well as the tidal residual current system in Yongil Bay.

  • PDF

Development of a System Dynamics Computer Model for Efficient Operations of an Industrial Water Supply System (공업용수 공급시스템의 효율적인 운영을 위한 시스템다이내믹스 모형의 개발)

  • Kim, Bong-Jae;Park, Su-Wan;Kim, Tae-Yeong;Jeon, Dae-Hun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.3
    • /
    • pp.383-397
    • /
    • 2012
  • In this study, a System Dynamics (SD) simulation model for the efficient operations of an industrial water supply system was developed by investigating the feedback loop mechanisms involved in the operations of the system. The system was modeled so that as demand is determined the water supply quantity of intake pumping stations and dams are allocated. The main feedback loop showed that many variables such as the combinations of pump operation, unit electric power(kWh/$m^3$), unit electric power costs(won/$m^3$), water level of water way tunnel, suction pressure and discharge of pumping station, and tank and service reservoir water level had causal effects and produced results depending on their causal relationship. The configurations of the model included an intake pumping station model, water way tunnel model, pumping station model (including the tank and service reservoir water level control model), and unit electric power model. The model was verified using the data from the case study industrial water supply system that consisted of a water treatment plant, two pumping stations and four dams with an annual energy costs of 5 billion won. It was shown that the electric power costs could have been saved 7~26% during the past six years if the operations had been based on the findings of this study.

The assessment of self cleaning velocity and optimal flushing velocity in water distribution system (상수관망의 자가세척 유속과 적정 플러싱 유속 평가)

  • Bae, Cheol-Ho;Choi, Doo Yong;Kim, Ju-Hwan;Kim, Do-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.4
    • /
    • pp.441-451
    • /
    • 2014
  • The flushing is important to maintain good water quality in water main. It is a technique of using water velocity to remove sediments in water distribution system. The variety of water quality problems can occur in a distribution system, so too can a variety of benefits be gained by system flushing. In order to effectively perform the flushing, the contaminants to be removed to set up and it can be solved, it is necessary to ensure the proper flow rate. In this study, the removal of contaminants present in the inner water pipe attached loose deposits such as fine particles of granular activated carbon, sand and iron corrosion product sought to derive flow rates. Thus, the constant observation of using pilot plant scale water distribution plant for the movement of floating characteristics of particles were assessed.

A Study on the economic analysis of the standing water level control system (SAL상수위 제어시스템의 경제성 분석에 관한 연구)

  • Hong, Jong-In;Hong, Seong-Wook;Kim, Sang-Won;Yang, Jin-Kook
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.281-283
    • /
    • 2013
  • In this paper, standing water level control system and a comparison of existing methods (anchor, PDD, DM) and economic analysis was conducted. 1) Cost PDD method (6%), DM system (4%), and the SAL standing water level control system (4%), except for the anchor system is similar to the construction of three methods based on the portion of the anchor system was analyzed that. 2) construction and maintenance costs compared with the sum of the partial was, anchor system (100%), PDD method (39%), DM system (37%), the SAL standing water level control system (21%), the SAL standing water level control system was identified as the lowest cost method of.

  • PDF

Design and Fabrication of Super Water-Saving Toilet System by Theory of Inventive Problem Solving (TRIZ) (창의적 문제해결 이론(TRIZ)를 활용한 초절수형 양변기 시스템의 설계 및 제작)

  • Lee, Kyeong-Won;Lee, Hong-Suk
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.376-379
    • /
    • 2001
  • This paper describes the design and fabrication process of super water-saving toilet bowl system by the theory of inventive problem solving (TRIZ). The physical contradiction in TRIZ is defined to obtain the conceptual design for saving water in toilet bowl system with preventing the bad smell from septic tank. The super water-saving toilet bowl system is obtained by using the separation principle in time for resolving the physical contradiction. The consumption of water in the prototype system fabricated, is estimated about $3{\ell}$ comparing with $13{\ell}$ of that in conventional toilet bowl system. The noise from water in the prototype toilet bowl system is decreased by 1/3 of that in conventional toilet bowl system.

  • PDF

The Technology of Peak Demand Reduction using Automatic Water Tank Pumping System on the Apartment And Analysis of Effect of Energy Cost (아파트 고가수조 자동급수장치를 이용한 전력피크 감소 및 전력시장에서의 효과 분석)

  • Lee, Jae-Gul;Lee, Yun-Kyoung;Cho, Won-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.161-163
    • /
    • 2006
  • This paper introduce the technology of peak demand reduction using automatic water tank pumping system on the apartment. That systems on the apartments installed water tank can control pumping(electricity) demand. Generally, system peak demand is occurred at the same time on workday and many water pumps consume electric power randomly. At this point, shift of operating time of water pump can reduce peak demand using automatic water tank pumping system. We were operating this system on some apartments for test of effect of peak demand reduction. and we represent result of demand shift. This result suggests that spread of the automatic water pumping system can contribute to reduce system peak demand and reduce system operation cost.

  • PDF

LCC Analysis of a Heat Pump System Using River Water (하천수 열원 이용 열펌프 시스템의 LCC 분석)

  • Han, Sang-Soo;Park, Cha-Sik;Kim, Yong-Chan
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1424-1428
    • /
    • 2009
  • The performance of a heat pump using river water as a heat source was compared with that of a conventional air-conditioner for cooling and a boiler system for heating. The heat pump system using river water considered the 1-stage cycle for cooling and the 2-stage cycle for heating. The COPs of the river water source heat pump were $0.5{\sim}1.1$ higher than those of the conventional system in the cooling season. The LCC of the river water source heat pump system was lower 13.5% and 32.4% than that of the conventional system I and II. In addition, when the initial cost ratios of the river water source heat pump system to the conventional system I and II were less than 1.2 and 1.4, respectively, an acceptable payback was found to be less than 5 years.

  • PDF