• Title/Summary/Keyword: Water surface elevation

Search Result 247, Processing Time 0.028 seconds

Experimental Study of Shape Parameter of Land-based OWC Wave Energy Converter (고정식 진동 수주형 파력 발전기(OWC) 형상 파라미터의 실험 연구)

  • Koo, Weon-Cheol;Kwon, Jin-Sung;Kim, Jun-Dong;Kim, Sung-Jae;Kim, Min-Woo;Choi, Mun-Kwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.33-38
    • /
    • 2012
  • The aim of this experimental study was to analyze the effect of the shape parameters and chamber pressure of a land-based oscillating water column (OWC) in regular incident waves. The magnitude of the free surface elevations inside the chamber was measured in a two-dimensional wave tank for various chamber skirt drafts and bottom slope angles. The surface elevations were also measured under both open chamber and partially open chamber conditions. From these measurements, the optimum shape of the OWC device could be predicted for the maximum wave energy conversion efficiency. It was found that the resonance frequency of the OWC system associated with incident waves moved toward the long wave region with increments of the draft of the chamber skirt and bottom slope. The behavior of the free surface elevation inside the chamber was also found to be dependent on the chamber pressure.

Experimental Study of Hydrodynamic Performance of Backward Bent Duct Buoy (BBDB) Floating Wave Energy Converter (부유식 진동수주형 파력발전기(BBDB)의 유체 동역학적 성능 실험 연구)

  • Kim, Sung-Jae;Kwon, Jinseong;Kim, Jun-Dong;Koo, Weoncheol;Shin, Sungwon;Kim, Kyuhan
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.53-58
    • /
    • 2012
  • An experimental study on the hydrodynamic performance of a backward bent duct buoy (BBDB) was performed in a 2D wave tank. The BBDB is one of the promising oscillating water column (OWC) types of floating wave energy converters. Two different corner-shaped BBDBs (sharp-corner and round-corner) were used to measure the maximum chamber surface elevations and body motions for various incident wave conditions, and their hydrodynamic characteristics were compared. In order to investigate the effect of the pneumatic pressure inside the chamber, the heave and pitch angle interacted with elevations were compared for both open chamber and partially open chamber BBDBs. From the comparison study, the deviation in the chamber surface elevations between the two shapes of BBDBs was found to be significant near the resonance period, which may be explained by viscous energy loss. It was also found that the pneumatic pressure noticeably affected the chamber surface elevation and body motions.

Conceptual Design of Passive Containment Cooling System for Concrete Containment

  • Lee, Seong-Wook;Baek, Won-Pil;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.358-363
    • /
    • 1995
  • A study on passive cooling systems for concrete containment of advanced pressurized water reactors has been performed. The proposed passive containment cooling system (PCCS) consist of (1) condenser units located inside containment, (2) a steam condensing pool outside containment at higher elevation, and (3) downcommer/riser piping systems which provide coolant flow paths. During an accident causing high containment pressure and temperature, the steam/air mixture in containment is condensed on the outer surface of condenser tubes transferring the heat to coolant flowing inside tubes. The coolant transfers the heat to the steam condensing pool via natural circulation due to density difference. This PCCS has the following characteristic: (1) applicable to concrete containment system, (2) no limitation in plant capacity expansion, (3) efficient steam condensing mechanism (dropwise or film condensation at the surface of condenser tube), and (4) utilization of a fully passive mechanism. A preliminary conceptual design work has been done based on steady-state assumptions to determine important design parameter including the elevation of components and required heat transfer area of the condenser tube. Assuming a decay power level of 2%, the required heat transfer area for 1,000MWe plant is assessed to be about 2,000 ㎡ (equivalent to 1,600 of 10 m-long, 4-cm-OD tubes) with the relative elevation difference of 38 m between the condenser and steam condensing pool and the riser diameter of 0.62 m.

  • PDF

Spatial Prediction of Soil Carbon Using Terrain Analysis in a Steep Mountainous Area and the Associated Uncertainties (지형분석을 이용한 산지토양 탄소의 분포 예측과 불확실성)

  • Jeong, Gwanyong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.3
    • /
    • pp.67-78
    • /
    • 2016
  • Soil carbon(C) is an essential property for characterizing soil quality. Understanding spatial patterns of soil C is particularly limited for mountain areas. This study aims to predict the spatial pattern of soil C using terrain analysis in a steep mountainous area. Specifically, model performances and prediction uncertainties were investigated based on the number of resampling repetitions. Further, important predictors for soil C were also identified. Finally, the spatial distribution of uncertainty was analyzed. A total of 91 soil samples were collected via conditioned latin hypercube sampling and a digital soil C map was developed using support vector regression which is one of the powerful machine learning methods. Results showed that there were no distinct differences of model performances depending on the number of repetitions except for 10-fold cross validation. For soil C, elevation and surface curvature were selected as important predictors by recursive feature elimination. Soil C showed higher values in higher elevation and concave slopes. The spatial pattern of soil C might possibly reflect lateral movement of water and materials along the surface configuration of the study area. The higher values of uncertainty in higher elevation and concave slopes might be related to geomorphological characteristics of the research area and the sampling design. This study is believed to provide a better understanding of the relationship between geomorphology and soil C in the mountainous ecosystem.

Analyzing the Flood Inundation in Low Agricultural Area (저지대 농경지의 홍수범람 분석)

  • Jun, Kye-Won;Lee, Ho-Jin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.2
    • /
    • pp.17-24
    • /
    • 2007
  • This study analyzes the flood inundation in low agricultural area caused by rainfall during typhoon periods and how flood inundation areas should be affected. GIS techniques, HEC-HMS and HEC-GeoHMS were used for flood runoff, HEC-RAS was applied in water surface elevation analysis at each cross-section. RMA2, SED2D were applied for runoff characteristics of inundation areas and river bed change and distribution of sediment. As a result, velocity distribution was analyzed 2.6 m/s-3.4 m/s in flood inundation by water level increase. In the case of bed elevation change, most sediments were deposited to the parts that adjoin bank.

Evaluation of Parameters in Hydrodynamic Model (동수역학모형의 매개변수 산정)

  • Yun, Tae-Hun;Lee, Jong-Uk;Jagal, Sun-Dong
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.1
    • /
    • pp.39-50
    • /
    • 2000
  • Generally speaking, a hydrodynamic model needs a friction coefficient (Manning coefficient or Chezy coefficient) and eddy viscosity. For numerical solution the coefficients are usually determined by recursive calculations. The eddy viscosity in numerical model plays physical diffusion in flow and also acts as numerical viscosity. Hence its value has influence on the stability of numerical solution and for these reasons a consistent evaluation procedure is needed. By using records of stage and discharge in the downstream reach of the Han river, I-D models (HEC-2 and NETWORK) and 2-D model (SMS), estimated values of Manning coefficient and an empirical equation for eddy viscosity are presented. The computed results are verified through the recorded flow elevation data.n data.

  • PDF

Construction of a System for the Generation and Analysis of Design Waves using the Genetic Algorithms (유전자 알고리즘을 이용한 설계파 생성 및 해석 시스템 구축)

  • Jeong, Seong-Jae;Shin, Jong-Keun;Choi, Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.1 s.145
    • /
    • pp.96-102
    • /
    • 2006
  • In this study, an optimization routine with genetic algorithms is coupled for the selection of free variables for the production of a control signal for the motion of wave board in the numerical wave tank. An excitation function for the controlling of the wave board is formulated on basis of amplitude modulation for the generation of nonlinear wave packets. The found variables by the optimization serve for the determination of wave board motion both with the computation and with the experiment. The breaking criterion of the water waves is implemented as boundary condition for the optimization procedure. With the analysis of the time registration on the local position in the wave tank the optimization routine is accomplished until the given design wave with defined surface elevation is found. Water surface elevation and associated fields of velocity and pressure are numerically computed.

Experimental study on liquid sloshing with dual vertical porous baffles in a sway excited tank

  • Sahaj, K.V.;Nasar, T.;Vijay, K.G.
    • Ocean Systems Engineering
    • /
    • v.11 no.4
    • /
    • pp.353-371
    • /
    • 2021
  • Sloshing behavior of liquid within containers represents one of the most fundamental fluid-structure interactions. Liquid in partially filled tanks tends to slosh when subjected to external disturbances. Sloshing is a vicious resonant fluid motion in a moving tank. To understand the effect of baffle positioned at L/3 and 2L/3 location, a shake table experiments was conducted for different fill volumes of aspect ratio 0.163, 0.325 and 0.488. For a fixed amplitude of 7.5 mm, the excitation frequencies are varied between 0.457 Hz to 1.976 Hz. Wave probes have been located at both tank ends to capture the surface elevation. The experimental parameters such as sloshing oscillation and energy dissipation are discussed here. Comparison is done for with baffles and without baffles conditions. For both conditions, the results showed that aspect ratio of 0.163 gives better surface elevation and energy dissipation than obtained for aspect ratio 0.325 and 0.488. Good agreement is observed when numerical analysis is compared with the experiments results.

Parametric studies on sloshing in a three-dimensional prismatic tank with different water depths, excitation frequencies, and baffle heights by a Cartesian grid method

  • Jin, Qiu;Xin, Jianjian;Shi, Fulong;Shi, Fan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.691-706
    • /
    • 2021
  • This paper aims to numerically investigate violent sloshing in a partially filled three-dimensional (3D) prismatic tank with or without a baffle, further to clarify the suppressing performance of the baffle and the damping mechanism of sloshing. The numerical model is based on a Cartesian grid multiphase flow method, and it is well validated by nonlinear sloshing in a 3D rectangular tank with a vertical baffle. Then, sloshing in an unbaffled and baffled prismatic tank is parametrically studied. The effects of chamfered walls on the resonance frequency and the impact pressure are analyzed. The resonance frequencies for the baffled prismatic tank under different water depths and baffle heights are identified. Moreover, we investigated the effects of the baffle on the impact pressure and the free surface elevation. Further, the free surface elevation, pressure and vortex contours are analyzed to clarify the damping mechanism between the baffle and the fluid.

Analysis of Flood Level Variation in Oship Stream Using HEC-RAS: Focuses on the Impact of the Typhoon Sanba (HEC-RAS를 이용한 오십천의 수위변화 해석: 태풍산바의 영향을 중심으로)

  • Jun, Kye-Won
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.2
    • /
    • pp.498-504
    • /
    • 2013
  • Recently, the frequency of typhoons have increased due to the effects of climate change. As a result, in mountain streams, it has caused streamflow increase upstream and frequent water surface elevation downstream. This study analyzed the effects of the heavy rainfalls caused by Typhoon Sanba, which had a direct impact on Korea between September 17 and 18, on the water level variations downstream in mountainous streams. In addition, the drainage basin of Samcheok Oship stream was chosen as the object of this study. This study analyzed the flood level by applying HEC-RAS model. The observed water level measured in 2012 and the water level simulated by HEC-RAS model showed similar results. In addition, the simulation results showed the maximum flood level was 5.32m the mean flow velocity was 2.33m/sec and the maximum channel water depth was 7.51m. The analysis showed that the heavy rainfalls caused by Typhoon Sanba had an impact on the water surface elevation in Oship stream. The final results from this study will give a reasonable and important data to perform the Design of Hydraulic Structure.