• Title/Summary/Keyword: Water surface elevation

Search Result 247, Processing Time 0.02 seconds

Physical Habitat Simulation Considering Stream Morphology Change due to Flood (홍수에 의한 하도변형을 고려한 물리서식처 모의)

  • Lee, Sungjin;Kim, Seung Ki;Choi, Sung-Uk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.805-812
    • /
    • 2014
  • This study investigates the impact of morphological change on the physical habitat simulation. For this, CCHE2D model is used for the hydraulic analysis including the morphological change, and the physical habitat suitability is assessed with habitat suitability curves. The model is applied to a 2.5km long reach downstream of the Goesan Dam, from Sujeon Bridge to Daesu Weir. Flow data of discharge and stage in July, 2006 are used in the computation. The numerical model is verified by means of comparison with the measured water surface elevation data, and the variation of the river bed is not verified in this study. Adult Zacco platypus is chosen for the dominant species. Physical habitat simulations result in composite habitat suitability and weighted usable area for drought, low, normal, and averaged-wet flows. The simulation results indicate that the composite suitability index increased at reaches right downstream of the Sujeon Bridge and around the bend. This also increased weighted usable area by 5.4-11.3%.

Wave Field Analysis around Permeable Rubble-Mound Breakwaters (투과 사석방파제 주변의 파랑장 해석)

  • 곽문수;이기상;편종근
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.2
    • /
    • pp.116-126
    • /
    • 2003
  • In this study, a method that leads to make a simple decision on important parameters in analysis of wave field in permeable rubble-mound, block-mound breakwater, such as penetration velocity of incident waves and resistance coefficient, is introduced. A model that could analyze wave field of permeable breakwater in harbor, by applying these methods and arbitrary transmission coefficient boundary condition to a time-dependent mild-slope equation, was introduced. The verification of the model was done by carrying out 2-D physical model test on permeable breakwater, measuring the change in water surface elevation, comparing the computation result with time series, and comparing the result gained from the 3-D physical model test on permeable block-mound breakwater in an field harbor with the computation result in terms of regional wave height ratio in a harbor.

Studies on the Focusing Solar Agricultural Crop Dryer - Part1. Heat Efficiency of Aluminum-laminated Aeryl Film Solar Heater - (농산물(農産物) 건조용(乾燥用) 곡면집광식(曲面集光式) 태양열(太陽熱) 이용(利用) 장치(裝置)에 관한 연구(硏究) - 제1보(第1報). 알루미늄-아크릴 필림을 이용(利用)한 태양열(太陽熱) 집열장치(集熱裝置)의 열이용(熱利用) 효율(?率) -)

  • Chun, Jae-Kun;Mok, Chul-Kyoon;Kim, Hyun-Uk
    • Korean Journal of Food Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.8-12
    • /
    • 1979
  • A cylindrical solar energy focusing collector constructed using aluminum-laminated film plastered on the acrylic plate and examined its performances under the Korean local weather conditions. The reflector surface of this collector· evidenced the reflectivity of 66.1%,which was satisfactory value that could be applicable to the solar collector for its low price and at·availability. Collector efficiency measured at the heat exchanger fluid in absorber-copper pipe black colored was 73% and the resulting natural convection of the heat transfer media (water) was recorded up to 2.82 cm/sec. The overall efficiency of the solar heater in operation was 28.6% and it was correlated with the solar energy input and the temperature elevation difference gained.

  • PDF

Research on Karst Landforms in Hogye, Mungyeong (문경시 호계면 일대의 카르스트 지형 연구)

  • Kim, Hwang Soon;Seo, Jongcheol
    • Journal of The Geomorphological Association of Korea
    • /
    • v.20 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • This study aims to provide fundamental data for further shape-factor research on karst by measuring and classifying the shape of surface topography in Hogye, Mungyeong. First, in the research area, there are 35 dolines and uvalas. Second, large uvalas are found in three places, including Gulnomjae in Bugokri, and Teotgol and Denjimigol in Urori. Third, there are 13 round dolines and 22 oval dolines. Next examining the cross section of dolines, there are 27 bowl shaped dolines, 2 plate shaped dolines, and 6 funnel shaped dolines. Fourth, most dolines lay over 200m elevation, which is ridge and top of mountain. Fifth, development direction of dolines resembles the strike direction of limestone in Hogye, suggesting that the development direction of limestone affects doline corrosion. From this situation, we can guess sinkholes of the doline would be linked with limestone caves by the underground water pipe. Three limestone caves, karren and dry valley etc. appear in the research area.

Land Use and Land Cover Mapping from Kompsat-5 X-band Co-polarized Data Using Conditional Generative Adversarial Network

  • Jang, Jae-Cheol;Park, Kyung-Ae
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.111-126
    • /
    • 2022
  • Land use and land cover (LULC) mapping is an important factor in geospatial analysis. Although highly precise ground-based LULC monitoring is possible, it is time consuming and costly. Conversely, because the synthetic aperture radar (SAR) sensor is an all-weather sensor with high resolution, it could replace field-based LULC monitoring systems with low cost and less time requirement. Thus, LULC is one of the major areas in SAR applications. We developed a LULC model using only KOMPSAT-5 single co-polarized data and digital elevation model (DEM) data. Twelve HH-polarized images and 18 VV-polarized images were collected, and two HH-polarized images and four VV-polarized images were selected for the model testing. To train the LULC model, we applied the conditional generative adversarial network (cGAN) method. We used U-Net combined with the residual unit (ResUNet) model to generate the cGAN method. When analyzing the training history at 1732 epochs, the ResUNet model showed a maximum overall accuracy (OA) of 93.89 and a Kappa coefficient of 0.91. The model exhibited high performance in the test datasets with an OA greater than 90. The model accurately distinguished water body areas and showed lower accuracy in wetlands than in the other LULC types. The effect of the DEM on the accuracy of LULC was analyzed. When assessing the accuracy with respect to the incidence angle, owing to the radar shadow caused by the side-looking system of the SAR sensor, the OA tended to decrease as the incidence angle increased. This study is the first to use only KOMPSAT-5 single co-polarized data and deep learning methods to demonstrate the possibility of high-performance LULC monitoring. This study contributes to Earth surface monitoring and the development of deep learning approaches using the KOMPSAT-5 data.

Mapping the Potential Distribution of Raccoon Dog Habitats: Spatial Statistics and Optimized Deep Learning Approaches

  • Liadira Kusuma Widya;Fatemah Rezaie;Saro Lee
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.4 no.4
    • /
    • pp.159-176
    • /
    • 2023
  • The conservation of the raccoon dog (Nyctereutes procyonoides) in South Korea requires the protection and preservation of natural habitats while additionally ensuring coexistence with human activities. Applying habitat map modeling techniques provides information regarding the distributional patterns of raccoon dogs and assists in the development of future conservation strategies. The purpose of this study is to generate potential habitat distribution maps for the raccoon dog in South Korea using geospatial technology-based models. These models include the frequency ratio (FR) as a bivariate statistical approach, the group method of data handling (GMDH) as a machine learning algorithm, and convolutional neural network (CNN) and long short-term memory (LSTM) as deep learning algorithms. Moreover, the imperialist competitive algorithm (ICA) is used to fine-tune the hyperparameters of the machine learning and deep learning models. Moreover, there are 14 habitat characteristics used for developing the models: elevation, slope, valley depth, topographic wetness index, terrain roughness index, slope height, surface area, slope length and steepness factor (LS factor), normalized difference vegetation index, normalized difference water index, distance to drainage, distance to roads, drainage density, and morphometric features. The accuracy of prediction is evaluated using the area under the receiver operating characteristic curve. The results indicate comparable performances of all models. However, the CNN demonstrates superior capacity for prediction, achieving accuracies of 76.3% and 75.7% for the training and validation processes, respectively. The maps of potential habitat distribution are generated for five different levels of potentiality: very low, low, moderate, high, and very high.

Interactions between Soil Moisture and Weather Prediction in Rainfall-Runoff Application : Korea Land Data Assimilation System(KLDAS) (수리 모형을 이용한 Korea Land Data Assimilation System (KLDAS) 자료의 수문자료에 대한 영향력 분석)

  • Jung, Yong;Choi, Minha
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.172-172
    • /
    • 2011
  • The interaction between land surface and atmosphere is essentially affected by hydrometeorological variables including soil moisture. Accurate estimation of soil moisture at spatial and temporal scales is crucial to better understand its roles to the weather systems. The KLDAS(Korea Land Data Assimilation System) is a regional, specifically Korea peninsula land surface information systems. As other prior land data assimilation systems, this can provide initial soil field information which can be used in atmospheric simulations. For this study, as an enabling high-resolution tool, weather research and forecasting(WRF-ARW) model is applied to produce precipitation data using GFS(Global Forecast System) with GFS embedded and KLDAS soil moisture information as initialization data. WRF-ARW generates precipitation data for a specific region using different parameters in physics options. The produced precipitation data will be employed for simulations of Hydrological Models such as HEC(Hydrologic Engineering Center) - HMS(Hydrologic Modeling System) as predefined input data for selected regional water responses. The purpose of this study is to show the impact of a hydrometeorological variable such as soil moisture in KLDAS on hydrological consequences in Korea peninsula. The study region, Chongmi River Basin, is located in the center of Korea Peninsular. This has 60.8Km river length and 17.01% slope. This region mostly consists of farming field however the chosen study area placed in mountainous area. The length of river basin perimeter is 185Km and the average width of river is 9.53 meter with 676 meter highest elevation in this region. We have four different observation locations : Sulsung, Taepyung, Samjook, and Sangkeug observatoriesn, This watershed is selected as a tentative research location and continuously studied for getting hydrological effects from land surface information. Simulations for a real regional storm case(June 17~ June 25, 2006) are executed. WRF-ARW for this case study used WSM6 as a micro physics, Kain-Fritcsch Scheme for cumulus scheme, and YSU scheme for planetary boundary layer. The results of WRF simulations generate excellent precipitation data in terms of peak precipitation and date, and the pattern of daily precipitation for four locations. For Sankeug observatory, WRF overestimated precipitation approximately 100 mm/day on July 17, 2006. Taepyung and Samjook display that WRF produced either with KLDAS or with GFS embedded initial soil moisture data higher precipitation amounts compared to observation. Results and discussions in detail on accuracy of prediction using formerly mentioned manners are going to be presented in 2011 Annual Conference of the Korean Society of Hazard Mitigation.

  • PDF

On the Wintertime Wind-driven Circulation in the Yellow Sea and the East China Sea : Part I. Effect of Tide-induced Bottom Friction (황해.동중국해의 겨울철 취송 순환에 대하여: Part I. 조류에 의한 저면 마찰력의 영향)

  • Lee, Jong-Chan;Kim, Chang-Shik;Jung, Kyung-Tae;Jun, Ki-Cheon
    • Ocean and Polar Research
    • /
    • v.25 no.spc3
    • /
    • pp.361-371
    • /
    • 2003
  • The effect of bottom friction on the steady wind-driven circulation in the Yellow Sea and the East China Sea (YSECS) has been studied using a two-dimensional numerical model with and without tidal forcing. Upwind flow experiment in YSECS has also been carried out with a schematic time variation in the wind field. The surface water setup and circulation pattern due to steady wind forcing are found to be very sensitive to the bottom friction. When the effects of tidal currents are neglected, the overall current velocities are overestimated and eddies of various sizes appear, upwind flow is formed within the deep trough of the Yellow Sea, forming a part of the topographic gyre on the side of Korea. When tidal forcing is taken into account, the wind-induced surface elevations are smoothed out due to the strong tide-induced bottom friction, which is aligned almost normal to the wind stresses; weak upwind flow is farmed in the deep trough of the Yellow Sea, west and south of Jeju. Calculation with wind forcing only through a parameterized linear bottom friction produces almost same results from the calculation with $M_2$ tidal forcing and wind forcing using a quadratic bottom friction, supporting Hunter (1975)'s linearization of bottom friction which includes the effect of tidal current, can be applied to the simulation of wind-driven circulation in YSECS. The results show that steady wind forcing is not a dominant factor to the winter-time upwind flow in YSECS. Upwind flow experiment which considers the relaxation of pressure gradient (Huesh et al. 1986) shows that 1) a downwind flow is dominant over the whole YSECS when the northerly wind reaches a maximum speed; 2) a trend of upwind flow near the trough is found during relaxation when the wind abates; 3) a northward flow dominates over the YSECS after the wind stops. The results also show that the upwind flow in the trough of Yellow Sea is forced by a wind-induced longitudinal surface elevation gradient.

Development and Application of Two-Dimensional Numerical Tank using Desingularized Indirect Boundary Integral Equation Method (비특이화 간접경계적분방정식방법을 이용한 2차원 수치수조 개발 및 적용)

  • Oh, Seunghoon;Cho, Seok-kyu;Jung, Dongho;Sung, Hong Gun
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.447-457
    • /
    • 2018
  • In this study, a two-dimensional fully nonlinear transient wave numerical tank was developed using a desingularized indirect boundary integral equation method. The desingularized indirect boundary integral equation method is simpler and faster than the conventional boundary element method because special treatment is not required to compute the boundary integral. Numerical simulations were carried out in the time domain using the fourth order Runge-Kutta method. A mixed Eulerian-Lagrangian approach was adapted to reconstruct the free surface at each time step. A numerical damping zone was used to minimize the reflective wave in the downstream region. The interpolating method of a Gaussian radial basis function-type artificial neural network was used to calculate the gradient of the free surface elevation without element connectivity. The desingularized indirect boundary integral equation using an isolated point source and radial basis function has no need for information about the element connectivity and is a meshless method that is numerically more flexible. In order to validate the accuracy of the numerical wave tank based on the desingularized indirect boundary integral equation method and meshless technique, several numerical simulations were carried out. First, a comparison with numerical results according to the type of desingularized source was carried out and confirmed that continuous line sources can be replaced by simply isolated sources. In addition, a propagation simulation of a $2^{nd}$-order Stokes wave was carried out and compared with an analytical solution. Finally, simulations of propagating waves in shallow water and propagating waves over a submerged bar were also carried and compared with published data.

A Study on Stability of Levee Revetment in Meandering Channel (만곡수로 내의 호안 안정성 연구)

  • Kim, Sooyoung;Yoon, Kwang Seok;Kim, Hyung-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.12
    • /
    • pp.1077-1087
    • /
    • 2015
  • The levee protect lifes, houses, and properties by blocking overflow of river. The revetment is forced to be covered on the slope of levee in order to prevent erosion. The stability of revetment is very important enough to directly connected to the stability of levee. In this study, the weak points of revetment on meandering channel were found by movable revetment experiment and the velocity and the water surface elevation (WSE) were measured at main points. The 3-D numerical simulations were performed under same conditions with experiment. And unclear flow characteristics by the limit of measuring instruments were analyzed through numerical simulation. Consequently, the section of large wall shear stress and the failure section are almost the same. Despite of small wall shear stress, the revetments located at right bank were carried away because of circulation zone due to secondary flow by meandering. With existing riprap design formula, the sizes of riprap determined using maximum local velocity were 1.5~4.7 times greater than them using mean velocity. As a result of this study, it is necessary to calculate the size of riprap in other ways for meandering and straight channel. At a later study, if the weighted value considered the radius of curvature and shape of hydraulic structure is applied to riprap design formula, it is expected that the size of revetment was evaluated rationally and accurately.