• Title/Summary/Keyword: Water supply and demand system evaluation

Search Result 20, Processing Time 0.023 seconds

Evaluation of Emergency Water Supply Plan for Block System of Water Network using WaterGEMS (WaterGEMS모형을 이용한 상수관망 블록시스템의 비상급수계획 평가)

  • Baek, Chun-Woo;Jun, Hwan-Don;Kim, Joong-Hoon;Yoo, Do-Guen;Lee, Kwang-Choon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.15-20
    • /
    • 2008
  • Hydraulic analysis of water distribution system can be divided into demand-driven analysis and pressure-driven analysis. Demanddriven analysis can give unrealistic results to simulate hydraulic conditions under abnormal operating conditions such as sudden demand increase and pipe failure. In Korea, demand-driven analysis has been used to establish emergency water supply plan in many water projects, but it is necessary to use pressure-driven analysis for establishment of emergency water supply plan. In this study, WaterGEMS model that was developed for pressure-driven analysis is used to evaluation of emergency water supply plan of J city. As the results, it was able to draw up more efficient plan for water supply in small block, and established emergency water supply plan of J city was determined to be appropriate.

A Study of Water Budget Analysis According to The Water Demand Management (수요관리에 의한 물수급변화 분석)

  • Seo, Jae-Seung;Lee, Dong-Ryul;Choi, Si-Jung;Kang, Seong-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.11
    • /
    • pp.797-803
    • /
    • 2011
  • In this study, we developed the assessment method that evaluate the water demand management and calculate the water saving volume using water use indicator, and developed the system to link the water saving volume that occur through demand management and water supply and demand. The results from this study, local governments with poor water conditions should be followed to improve the water supply. And, future water demand estimates should be even considering it. We calculated the water saving volume of the Geum River basin using K-WEAP (Korea-Water Evaluation And Planning System) and performed the water budget analysis. We found that the change of river flow, ground water level and reservoir water level, and it can be utilized for other demand.

Comparison and discussion of water supply and demand forecasts considering spatial resolution in the Han-river basin (분석단위 세분화에 따른 한강권역의 물수급 분석 비교 및 고찰)

  • Oh, Ji-Hwan;Kim, Yeon-Su;Ryu, Kyong Sik;Bae, Yeong Dae
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.7
    • /
    • pp.505-514
    • /
    • 2019
  • Our country is making efforts to manage water resources efficiently. In the future, It is necessary to develop a plan after subdividing the basin considering regional problems and water use, topographical and climatic characteristics. This study constructed water supply and demand system based on the standard watershed unit for water shortage evaluation considering spatial resolution. In addition, water shortage were calculated and compared using the MODSIM model in the Han-river basin. As a result, the average water shortage occurring during the 49 years (1967-2015) was 129.98 million $m^3$ for the middle watershed unit and 222.24 million $m^3$ for the standard watershed unit, resulting in a difference of about 2.1 billion m3. However, the trends and distribution of water shortage occurrence were very similar. The reason for this is that, in the case of the Middle watershed unit analysis, water shortages are calculated for the demand for living, industrial, and agricultural water for the representative natural flow value, assuming that all the water can be used in basin. The standard basin unit analysis showed that the difference between the fractionated supply and demand resulted in a large water shortage due to the relatively small amount of available water, and that the main stream did not show water shortage due to the ripple effect of the return flow. If the actual water use system is considered in the model as well as the subdivision of the spatial unit, it will be possible to evaluate the water supply and demand reflecting the regional characteristics.

Evaluation on Water Supply Capability by Linkage Water Balance of Irrigation Facilities (연계 물수지 분석에 의한 농업용수 공급량 평가)

  • Jang, Jung-Seok;Chung, Jin-Ho;Lee, Tae-Ho
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.318-323
    • /
    • 2005
  • This research evaluates agricultural water supply capabilities for water computing demand and supply for water of the whole water system of Ansung stream by carrying out basin water balance classified by irrigation facility of water system of Ansung stream.

  • PDF

Water demand forecasting at the DMA level considering sociodemographic and waterworks characteristics (사회인구통계 및 상수도시설 특성을 고려한 소블록 단위 물 수요예측 연구)

  • Saemmul Jin;Dooyong Choi;Kyoungpil Kim;Jayong Koo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.6
    • /
    • pp.363-373
    • /
    • 2023
  • Numerous studies have established a correlation between sociodemographic characteristics and water usage, identifying population as a primary independent variable in mid- to long-term demand forecasting. Recent dramatic sociodemographic changes, including urban concentration-rural depopulation, low birth rates-aging population, and the rise in single-person households, are expected to impact water demand and supply patterns. This underscores the necessity for operational and managerial changes in existing water supply systems. While sociodemographic characteristics are regularly surveyed, the conducted surveys use aggregate units that do not align with the actual system. Consequently, many water demand forecasts have been conducted at the administrative district level without adequately considering the water supply system. This study presents an upward water demand forecasting model that accurately reflects real water facilities and consumers. The model comprises three key steps. Firstly, Statistics Korea's SGIS (Statistical Geological Information System) data was reorganized at the DMA level. Secondly, DMAs were classified using the SOM (Self-Organizing Map) algorithm to consider differences in water facilities and consumer characteristics. Lastly, water demand forecasting employed the PCR (Principal Component Regression) method to address multicollinearity and overfitting issues. The performance evaluation of this model was conducted for DMAs classified as rural areas due to the insufficient number of DMAs. The estimation results indicate that the correlation coefficients exceeded 0.9, and the MAPE remained within approximately 10% for the test dataset. This method is expected to be useful for reorganization plans, such as the expansion and contraction of existing facilities.

Development of Water Demand Forecasting Simulator and Performance Evaluation (단기 물 수요예측 시뮬레이터 개발과 예측 알고리즘 성능평가)

  • Shin, Gang-Wook;Kim, Ju-Hwan;Yang, Jae-Rheen;Hong, Sung-Taek
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.581-589
    • /
    • 2011
  • Generally, treated water or raw water is transported into storage reservoirs which are receiving facilities of local governments from multi-regional water supply systems. A water supply control and operation center is operated not only to manage the water facilities more economically and efficiently but also to mitigate the shortage of water resources due to the increase in water consumption. To achieve the goal, important information such as the flow-rate in the systems, water levels of storage reservoirs or tanks, and pump-operation schedule should be considered based on the resonable water demand forecasting. However, it is difficult to acquire the pattern of water demand used in local government, since the operating information is not shared between multi-regional and local water systems. The pattern of water demand is irregular and unpredictable. Also, additional changes such as an abrupt accident and frequent changes of electric power rates could occur. Consequently, it is not easy to forecast accurate water demands. Therefore, it is necessary to introduce a short-term water demands forecasting and to develop an application of the forecasting models. In this study, the forecasting simulator for water demand is developed based on mathematical and neural network methods as linear and non-linear models to implement the optimal water demands forecasting. It is shown that MLP(Multi-Layered Perceptron) and ANFIS(Adaptive Neuro-Fuzzy Inference System) can be applied to obtain better forecasting results in multi-regional water supply systems with a large scale and local water supply systems with small or medium scale than conventional methods, respectively.

A Study on the Performance Evaluation of Recirculation System for Individual Hot Water Supply System in Residential Buildings (주거건물의 개별급탕방식 환탕배관 적용에 따른 급탕성능 평가에 관한 연구)

  • Cha, Min-Chul;Yeo, Myoung-Souk;Seok, Ho-Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.12
    • /
    • pp.857-864
    • /
    • 2007
  • In the current residential building, hot water supply system consumes the second largest energy in order to make the thermal comport condition of residential space. The more residential environment improves the more the demand for hot water and water consumption is increasing gradually. So this study examines the possibility of applying the recirculation for individual hot water supply system compared with the existing method for waiting time for hot water, wasted water and energy consumption. The results are as follows. (1) In case of recirculation system method the waiting time for hot water can be reduced up to $69\sim85%$ in spring and fall period and so dose up to $77\sim85%$ in winter period. (2) The total wasted water has a little change compared with the existing method which can make the total wasted water reduced about $77\sim86%$. (3) The efficiency of hot water supply system can be improved, if the method which blocks the inflow of cold water is applied, when return pump is operated to recirculate hot water in recirculation system.

Comparison and discussion of MODSIM and K-WEAP model considering water supply priority (공급 우선순위를 고려한 MODSIM과 K-WEAP 모형의 비교 및 고찰)

  • Oh, Ji-Hwan;Kim, Yeon-Su;Ryu, Kyong Sik;Jo, Young Sik
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.7
    • /
    • pp.463-473
    • /
    • 2019
  • This study compared the characteristics of the optimization technique and the water supply and demand forecast using K-WEAP (Korea-Water Evaluation and Planning System) model and MODSIM (Modified SIMYLD) model considering wtaer supply priority. Currently, The national water resources plan applied same priority for municipal, industrial and agricultural demand. the K-WEAP model performs the ratio allocation to satisfy the maximum satisfaction rate, whereas the MODSIM model should be applied to the water supply priority of demands. As a result of applying the priority, water shortage decreased by an average of $1,035,000m^3$ than same prioritized results. It is due to the increase of the return flow rate as the distribution of Municipal and industrial water increases. Comparing the analysis results of K-WEAP and MODSIM applying the priorities, the relative error was within 5.3% and the coefficient of determination ($R^2$) was 0.9999. In addition, if both models provide reasonable water balance analysis results, K-WEAP is superior to GUI convenience for model construction and data processing. However, MODSIM is more effective in simulation time efficiency. It is expected that it will be able to carry out analysis according to various scenarios using the model.

A Study on Simplified Evaluation for Renewable Energy based Combination System in School - Considering the Size of Classroom and Capital Cost - (학교건물의 신·재생에너지기반 복합시스템 간이평가 기법 연구 - 학급규모와 투자비 중심으로 -)

  • Kim, Ji-Yeon
    • KIEAE Journal
    • /
    • v.13 no.2
    • /
    • pp.77-84
    • /
    • 2013
  • Schools are one of favorable public buildings for Renewable Energy(RE) systems due to site conditions and their energy demand profiles(e.g. daytime-based use of hot water and heating/cooling). Although the government encourages schools to be equipped with RE systems, the adoption of RE systems in existing energy supply systems faces technical and financial barriers. For example, when installing a RE-based combination system(RECS) to meet the energy demand at various school scales, identifying cost effective combination of capacities of the RECS is not trivial since it usually requires technically intensive work including detailed simulation and demand/supply analysis with extensive data. This kind of simulation-based approaches is hardly implementable in practice. To address this, a simpler and applicable decision-supporting method is suggested in this study. This paper presents a simplified model in support of decision-making for optimal capacities of RECS within given budget scales and schools sizes. The proposed model was derived from detailed simulation results and statistical data. Using this model, the optimal capacities of RECS can be induced from the number of classes in a school.

Development of Water Management System for Optimal Operation and Control in Wide-area Waterworks (광역상수도의 최적운영 및 제어를 위한 수운영시스템 개발)

  • 남의석;우천희;김학배
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.7
    • /
    • pp.489-497
    • /
    • 2003
  • A water management system is developed to reduce the unit cost of production in wide-area waterworks. Improving productivity in waterworks is to save power rate. We suggest a method to schedule the supply of water according to the time-varying power rate and pump control scheme. Water pipeline analysis package (SynerGEE Water) is utilized to obtain optimal pump control solution adaptation to water demand. Our evaluation results show that developed scheme is more efficient than the conventional.