• Title/Summary/Keyword: Water stress

Search Result 3,158, Processing Time 0.034 seconds

Response of Monodehydroascorbate Reductase (MDHAR) in Lettuce (Lactuca sativa L.) Leaves Subjected to Water Deficit Stress (수분 부족 스트레스 처리시 Monodehydroascorbate Reductase (MDHAR)의 반응)

  • Kang, Sang-Jae
    • Journal of Bio-Environment Control
    • /
    • v.17 no.4
    • /
    • pp.273-282
    • /
    • 2008
  • The relationship between water deficit stress and monodehydroascorbate reductase (MDHAR) activity was determined in lettuce (Lactuca sativa L.) leaves under water stress condition imposed by with-holding water for 72 hrs. Relative water content determined in water deficit stressed lettuce leaves gradually reduced from 91.29% to 74.58%, and water content of medium drastically decreased 4.73% after quitting of irrigation. Hydrogen peroxide content in leaves subjected to water deficit stress rapidly increased, but soluble protein content rapidly decreased when those were compared to control plant. The relationship between relative water content and hydrogen peroxide content in stressed leaves positively correlated with $R^2$=0.8851, but soluble protein content reversely correlated with $R^2$=0.9826. Total chlorophyll content in stressed plant leaves was higher than that of control plant, and increased rapidly in early stage of treatment of both stressed and control plants. Carotenoid content was higher than that of control plant, and the ratio of carotenoid to total chlorophyll in stressed plant was higher as compared to control plant. As water deficit stress continued progressively, total ascorbate content in stressed plant leaves was a little higher than that of control plant. But dehydroascorbate (DHA) content within 6 hr of water deficit stress was higher than that of control plant, and then, content of control plant in 12 hr of stress treatment higher than that of stressed leaves. The activity of monodehydroascorbate reductase of cytosolic and chloroplastic tractions increased dramatically, and mRNA of MDHAR was highly detected by probing $^{32}P$-labeled single stranded MDHAR RNA of lettuce plant leaves subjected to water deficit stress. Relationship between MDHAR activity and relative water content and hydrogen peroxide highly correlated with $R^2$=0.9937 and 0.8645, respectively.

Grain Yield and Physiological Responses of Water Stress at Reproductive Stage in Barley (보리 생식생장기의 수분부족이 수량 및 몇 가지 생리적 반응에 미치는 영향)

  • Choi, Won-Yul;Kwon, Yong-Woong;Park, Jong-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.3
    • /
    • pp.263-269
    • /
    • 1997
  • To cope with increasing importance of water stress in food crop production, some physiological characteristics, their cultivar-differences and grain yield of winter barley cultivars in response to water stress during reproductive stages were studied employing three covered-barley cultivars, Milyang 12, Durubori, and Olbori, one naked-barley cultivar, Baegdong, and one two-row malting-barley cultivar, Hyangmaeg. The barley grown in pot-soil was conditioned for 10 days under water stress, varying the time of water stress : 20 days before heading, 10 days before heading and the time of heading. The decrease in growth due to water stress varied greatly with the cultivars and time of water stress. The greatest injury occurred when water stress was imposed for 10 days from 10 days before heading : the culm length of water-stressed plants have shown reduced by 85∼98% of the non-stressed; the number of spikes per plant by 52∼83%; the number of grains per spike by 71∼86%; 1,000-grain weight by 80∼84%; yield per pot by 60∼94%. The number of spikes per plant as one of yield components was most sensitively affected. As a whole, the drought resistance of cultivars was high in the order of Olbori> Milyang 12 and Durubori> Hyangmaeg>Baegdong. On rewatering the plants after termination of the water stress treatment the recovery rate of free proline content and relative turgidity of flag leaf were higher in 3 covered-barley cultivars, and lower in cultivars Baegdong and Hyangmaeg.

  • PDF

A comparative experimental study on the mechanical properties of cast-in-place and precast concrete-frozen soil interfaces

  • Guo Zheng;Ke Xue;Jian Hu;Mingli Zhang;Desheng Li;Ping Yang;Jun Xie
    • Geomechanics and Engineering
    • /
    • v.36 no.2
    • /
    • pp.145-156
    • /
    • 2024
  • The mechanical properties of the concrete-frozen soil interface play a significant role in the stability and service performance of construction projects in cold regions. Current research mainly focuses on the precast concrete-frozen soil interface, with limited consideration for the more realistic cast-in-place concrete-frozen soil interface. The two construction methods result in completely different contact surface morphologies and exhibit significant differences in mechanical properties. Therefore, this study selects silty clay as the research object and conducts direct shear tests on the concrete-frozen soil interface under conditions of initial water content ranging from 12% to 24%, normal stress from 50 kPa to 300 kPa, and freezing temperature of -3℃. The results indicate that (1) both interface shear stress-displacement curves can be divided into three stages: rapid growth of shear stress, softening of shear stress after peak, and residual stability; (2) the peak strength of both interfaces increases initially and then decreases with an increase in water content, while residual strength is relatively less affected by water content; (3) peak strength and residual strength are linearly positively correlated with normal stress, and the strength of ice bonding is less affected by normal stress; (4) the mechanical properties of the cast-in-place concrete-frozen soil interface are significantly better than those of the precast concrete-frozen soil interface. However, when the water content is high, the former's mechanical performance deteriorates much more than the latter, leading to severe strength loss. Therefore, in practical engineering, cast-in-place concrete construction is preferred in cases of higher negative temperatures and lower water content, while precast concrete construction is considered in cases of lower negative temperatures and higher water content. This study provides reference for the construction of frozen soil-structure interface in cold regions and basic data support for improving the stability and service performance of cold region engineering.

Proline, Sugars, and Antioxidant Enzymes Respond to Drought Stress in the Leaves of Strawberry Plants

  • Sun, Cunhua;Li, Xuehua;Hu, Yulong;Zhao, Pingyi;Xu, Tian;Sun, Jian;Gao, Xiali
    • Horticultural Science & Technology
    • /
    • v.33 no.5
    • /
    • pp.625-632
    • /
    • 2015
  • Drought is a severe abiotic stress that affects global crop production. A drought model was created for 'Toyonoka' Fragaria ${\times}$ ananassa, and the effects of drought stress on contents of proline, sugars, and antioxidant enzyme activities were investigated. Strawberry transplants with identical growth were chosen for the experiments and the randomized design included four replications (10 plants per block). The experimental sets differed in the moisture level of the culture medium relative to the range of moisture content as follows: control, 70-85%; mild drought stress, 50-60%; moderate drought stress, 40-50%; and severe drought stress, 30-40%. Drought stress was imposed by limiting irrigation. Plants were sampled and physiological parameters w ere measured on 0, 2, 4, 6, 8, and 10 days after the commencement of droughts tress. The water potential of strawberry leaves decreased in the plants under mild, moderate, and severe stress during the course of the water stress treatment and exhibited a significant difference from the control. Strawberry leaves subjected to drought stress had higher accumulation of proline, sugars, and malondialdehyde, and higher activities of superoxide dismutase, peroxidase, and catalase than leaves of control plants. Malondialdehyde levels increased in parallel with the severity and duration of drought stress. By contrast, antioxidant enzyme activity displayed dynamic responses to drought stress, first increasing and subsequently decreasing as the severity and duration of drought stress increased. These results suggest that strawberry plants respond to drought stress by altering the activities of antioxidant enzymes and the levels of osmotically active metabolites. These biochemical response changes may confer adaptation to drought stress and improve the capacity of plants to withstand water-deficit conditions.

Changes of antioxidant enzyme activities subjected to water stress in soybean leaves (대두(大豆)에서 분석(水分)스트레스에 의(依)한 항산화효소(抗酸化酵素)의 활성도(活性度) 변화(變化))

  • Kim, Tae-Sung;Kang, Sang-Jae;Park, Woo-Churl
    • Current Research on Agriculture and Life Sciences
    • /
    • v.16
    • /
    • pp.24-30
    • /
    • 1998
  • This experiment was carried out to elucidate and study about plant defense mechanism subjected to water stress(drought, flooding). We measured water content, total soluble protein content as stress marker and superoxide dismutase(SOD), catalase (CAT) as antioxidant enzymes subjected to water stress(drought, flooding) and recovery in soybean leaves. The results obtained were as follows; Two soybean lines(keonolkong, euhakong)leaves exposed to water stress (drought, flooding) showed premature senescence as evidence by the decrease in water content, and total soluble protein content, but those of soybean leaves subject to water stress recovery for 3 days were recovered. Visual damage was much worse at drought stress than flooding stress and was worse keunolkong than enhakong. The activity of superoxide dismutase, catalase subjected to water stress(drought, flooding)was on the decrease, but degree of decrease was different from a sort of soybean lines, drought and flooding stress.

  • PDF

Changes in Photosynthetic Performance and Water Relation Parameters in the Seedlings of Korean Dendropanax Subjected to Drought Stress (건조 스트레스에 따른 황칠나무 유묘의 광합성과 수분특성인자 변화)

  • Lee, Kyeong Cheol
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.2
    • /
    • pp.181-187
    • /
    • 2018
  • Background: This study aimed to investigate out the influence of drought stress on the physiological responses of Dendropanax morbifera seedlings. Methods and Results: Drought stress was induced by discontinuing water supply for 30 days. Under drought stress, photosynthetic activity was significantly reduced with decreasing soil water content (SWC), as revealed by the parameters such as Fv/Fm, maximum photosynthetic rate ($P_{N\;max}$), stomatal conductance ($g_s$), stomatal transpiration rate (E), and intercellular $CO_2$ concentration (Ci). However, water use efficiency (WUE) was increased by 2.5 times because of the decrease in $g_s$ to reduce transpiration. Particularly, E and $g_s$ were remarkably decreased when water was withheld for 21 days at 6.2% of SWC. Dendropanax morbifera leaves showed osmotic adjustment of -0.30 MPa at full turgor and -0.13 MPa at zero turgor. In contrast, the maximum bulk modulus of elasticity ($E_{max}$) did not change significantly. Thus, Dendropanax morbifera seedlings could tolerate drought stress via osmotic adjustment. Conclusions: Drought avoidance mechanisms of D. morbifera involve reduction in water loss from plants, through the control of stomatal transpiration, and reduction in cellular osmotic potential. Notably photosynthetic activity was remarkably reduced, to approximately 6% of the SWC.

Dry Matter Accumulation and Leaf Mineral Contents as Affected by Excessive Soil Water in Soybean

  • Seong, Rak-Chun;Kim, Jeong-Gyu;Nelson, C. Jeny
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.2
    • /
    • pp.129-133
    • /
    • 1999
  • Excessive soil water at vegetative growth stages during the rainy season induces yield losses in soybeans. Our objectives were to obtain basic information about the cultivar differences and to understand the stress-tolerance process for due to excessive soil water. Previous experiments revealed soybean genotypic differences in tolerance to excessive soil water. A field experiment was conducted at the Research Farm of Korea University near Seoul on 21 May 1998. Soybean[Glycine max (L.) Merrill] cultivars, 'Hannamkong' (sensitive) and 'Taekwan-gkong'(tolerant) were planted in vinyl-lined plots(1.2 x 4.2 x 0.3 m deep) and control plots. Drip irrigation began at VI growth stage to submerge the soil surface. Three weeks of excessive soil water treatment reduced all growth parameters measured to soybean plants. Excessive soil water stress resulted in decreases of N, P, K, Ca, Mg and Cu, and increases of Fe and Mn contents in soybean leaves. The stress index of tolerant cultivars under excessive soil water showed no large difference in soybean growth characteristics measured at three growth stages. However, K, Ca, Mg, Fe and Mn contents in soybean leaves appeared to differ between sensitive and tolerant cultivars. From the above results, stress and tolerance indices are proposed for a method to test cultivar differences in plant responses within a species under adverse growth environments.

  • PDF

Protective Effect of Artificially Enhanced Level of L-Ascorbic Acid against Water Deficit-Induced Oxidative Stress in Rice Seedlings

  • Boo, Yong Chool;Cho, Moonjae;Jung, Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.2
    • /
    • pp.66-70
    • /
    • 1999
  • Effects of the enhanced level of L-ascorbic acid (AA) on the water deficit-induced oxidative damage were studied in rice (Oryza sativa L.) seedlings. The seedlings sprayed with 20 to 80 mM L-galactono-${\gamma}$-lactone (GL), a putative precursor of AA, showed 2 to 5-fold higher levels of AA compared with controls. Pretreatment of the seedlings with GL prior to water stress imposition caused virtually no effect on dehydration of tissues during water deficit but substantially mitigated oxidative injury, as accessed by 2-thiobarbituric acid-reactive substances, ${\alpha}$-tocopherol, chlorophylls and ${\beta}$-carotene. Proline accumulation during water stress was also significantly lowered in the treated seedlings. In a complementary experiment, AA retarded photodegradation of ${\alpha}$-tocopherol in isolated thylakoids far more efficiently than glutathione. GL in itself did not show any noticeable reactivity toward ${\alpha}$-tocopheroxyl radical. The results demonstrate the antioxidative function of AA in rice seedlings encountering water-limited environments, suggesting a critical role of AA as a defense against oxidative stress in plants.

  • PDF

Mechanical response of rockfills in a simulated true triaxial test: A combined FDEM study

  • Ma, Gang;Chang, Xiao-Lin;Zhou, Wei;Ng, Tang-Tat
    • Geomechanics and Engineering
    • /
    • v.7 no.3
    • /
    • pp.317-333
    • /
    • 2014
  • The study of the mechanical behavior of rockfill materials under three-dimensional loading conditions is a current research focus area. This paper presents a microscale numerical study of rockfill deformation and strength characteristics using the Combined Finite-Discrete Element Method (FDEM). Two features unique to this study are the consideration of irregular particle shapes and particle crushability. A polydisperse assembly of irregular polyhedra was prepared to reproduce the mechanical behavior of rockfill materials subjected to axial compression at a constant mean stress for a range of intermediate principal stress ratios in the interval [0, 1]. The simulation results, including the stress-strain characteristics, relationship between principal strains, and principal deviator strains are discussed. The stress-dilatancy behavior is described using a linear dilatancy equation with its material constants varying with the intermediate principal stress ratio. The failure surface in the principal stress space and its traces in the deviatoric and meridian plane are also presented. The modified Lade-Duncan criterion most closely describes the stress points at failure.

Drought Tolerance in Italian Ryegrass is Associated with Genetic Divergence, Water Relation, Photosynthetic Efficiency and Oxidative Stress Responses

  • Lee, Ki-Won;Woo, Jae Hoon;Song, Yowook;Lee, Sang-Hoon;Rahman, Md Atikur
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.3
    • /
    • pp.208-214
    • /
    • 2022
  • Drought stress is a condition that occurs frequently in the field, it reduces of the agricultural yield of field crops. The aim of the study was to screen drought-adapted genotype of Italian rye grass. The experiments were conducted between the two Italian ryegrass (Lolium multiflorum L.) cultivars viz. Hwasan (H) and Kowinearly (KE). The plants were exposed to drought for 14 days. The results suggest that the morphological traits and biomass yield of KE significantly affected by drought stress-induced oxidative stress as the hydrogen peroxide (H2O2) level was induced, while these parameters were unchanged or less affected in H. Furthermore, the cultivar H showed better adaptation by maintaining several physiological parameter including photosystem-II (Fv/Fm), water use efficiency (WUE) and relative water content (RWC%) level in response to drought stress. These results indicate that the cultivar H shows improved drought tolerance by generic variation, improving photosynthetic efficiency and reducing oxidative stress damages under drought stress. These findings can be useful to the breeder and farmer for improving drought tolerance in Italian rye grass through breeding programs.