• Title/Summary/Keyword: Water stable isotope

Search Result 118, Processing Time 0.028 seconds

Hydrogeochemical Characteristics of Groundwater on Well Depth Variation in the Heunghae Area, Korea (심도 변화에 따른 흥해지역 지하수의 수리 지화학적 특성)

  • Yun Uk;Cho Byong-Wook
    • The Journal of Engineering Geology
    • /
    • v.15 no.4 s.42
    • /
    • pp.391-405
    • /
    • 2005
  • Chemical and isotopic analysis for stream water, shallow groundwater, intermediate groundwater and deep groundwater was carried out to grasp hydrogeochemical characteristics of groundwater in the Heunghae area, Pohang city. Water type of stream water and shallow groundwaters is typified as Ca-Cl type, intermediate groundwater is $Na-HCO_3$, and deep groundwater is prominent in Wa-Cl type. $HCO_3^-\;and\;SiO_2$ in shallow groundwater are originated from weathering of silicate minerals, whereas those of deep groundwaters are resulted from weathering of carbonate minerals. Ca and Mg ions in both shallow and deep groundwaters are resulted from weathering of calcite and dolomite. $SO_4^{2-}$ in shallow groundwater is originated mainly from pyrite oxidation. As well depth increases, pH and TDS increase, but Eh and DO decrease. Alkali metal contents(K, Na, Li) increases as well depth increases, but alkali earth metal(Mg, Ca) and hi concentrations increase as well depth decreases. Anions, halogen elements(F, Cl, Br), and $HCO_3$ contents increase as well depth increases. The average stable isotope value of the groundwater of each depth is as follows; deep groundwater: ${\delta}^{18}O=-10.1\%o,\;{\delta}D=-65.8\%_{\circ}$, intermediate groundwater: ${\delta}^{18}O=-8.9\%_{\circ},\;{\delta}D=-59.6\%_{\circ}$, shallow groungwater : ${\delta}^{18}O=-8.0\%_{\circ},\;{\delta}D=-53.6\%_{\circ}$, surface water : ${\delta}^{18}O=-7.9\%_{\circ},\;{\delta}D=-53.3\%_{\circ}$ respectively.

Groundwater and Stream Water Acidification and Mixing with Seawater, and Origin of Liquefaction-Expelled Water in a Tertiary Formation in the Pohang Area (포항지역 제3기층내 지하수와 지표수의 산성화 및 해수혼합, 그리고 액상화 유출수 기원에 관한 연구)

  • Jeong, Chan Ho;Ou, Song Min;Lee, Yu Jin;Lee, Yong Cheon;Kim, Young Seog;Kang, Tae Seob
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.559-569
    • /
    • 2022
  • This study investigated the acidification and mixing with seawater of groundwater, stream water, and reservoir water in the Hunghae area of Pohang City, as well as the source of water expelled to the stream by liquefaction induced by the Pohang earthquake on 15 November 2017. Geologically, the area consists of Tertiary sedimentary rocks. We collected six samples of groundwater, five of reservoir water, four of stream water, two of liquefaction water, and one of seawater to analyze the chemical composition and stable isotopes (𝛿D and 𝛿18O). Gogkang Stream flows eastward through the central part of the study area into the East Sea. The groundwater and reservoir water in the lower part of the stream are acidic (pH < 4), have a Ca(Mg)-SO4 composition, and high concentrations of Al, Fe, and Mn, likely due to the oxidation of pyrite in Tertiary rocks. The groundwater in the upper part of the stream have a Ca(Na)-HCO3(Cl) composition, indicating the mixing of seawater with the stream water. The 𝛿D and 𝛿18O isotope data indicate the isotopic enrichment of reservoir water by evaporation. Based on the chemical and isotopic data, it is inferred that the two samples of liquefaction water originated from alluvium water in a transition zone with stream water, and from deep and shallow groundwaters that has been infiltrated by seawater, respectively.

Stable Isotope and Fluid Inclusion Studies of Gold-Silver-Bearing Hyarothermal-Vein Deposits, Cheonan-Cheongyang-Nonsan Mining District, Republic of Korea: Cheongyang Area (한반도 천안-청양-논산지역 광화대내 금-은 열수광상의 안정동위원소 및 유체포유물 연구 : 청양지역)

  • So, Chil-Sup;Shelton, K.L.;Chi, Se-Jung;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.21 no.2
    • /
    • pp.149-164
    • /
    • 1988
  • Electrum-sulfide mineralization of the Samgwang and Sobo mines of the Cheongyang Au-Ag area was deposited in two stages of quartz and calcite veins that fill fault zones in granite gneiss. Radiometric dating indicates that mineralization is Early Cretaceous age (127 Ma). Fluid inclusion and sulfur isotope data show that ore mineralization was deposited at temperatures between $340^{\circ}$ and $180^{\circ}C$ from fluids with salinities of 1 to 8 wt. % equiv. NaCl and a ${\delta}^{34}S_{{\sum}S}$ value of 2 to 5 per mil. Evidence of fluid boiling (and $CO_2$ effervescence) indicates a range of pressures from < 200 to $\approx$ 700 bars, corresponding to depths of ${\approx}1.5{\pm}0.3\;km$ in a hydrothermal system which alternated from lithostatic toward hydrostatic conditions. Au-Ag deposition was likely a result of boiling coupled with cooling. Meaured and calculated hydrogen and oxygen isotope values of ore-forming fluids indicate a significant meteoric water component, approaching unexchanged paleometeoric water values. Comparison of these values with those of other Korean Au-Ag deposits reveals a relationship among depth, Au/Ag ratio and degree of water-rock interaction. All investigated Korean Jurassic and Cretaceous gold-silver-bearing deposits have fluids which are dominantly evolved meteoric waters, but only deeper systems (${\geq}1.5\;km$) are exclusively gold-rich.

  • PDF

Preliminary Experimental Result for Clarifying Sr Isotope Behaviour of Water due to Water-Rock Interaction (물-암석반응에 따른 물에서의 Sr동위원소의 거동에 대한 예비실험결과)

  • Lee, Seung-Gu;Kim, Jeong-Chan
    • Economic and Environmental Geology
    • /
    • v.43 no.3
    • /
    • pp.211-222
    • /
    • 2010
  • A batch experiment was carried out to investigate a variation of Sr concentration and $^{87}Sr/^{86}Sr$ ratio in the solution by water-rock interaction. The experiments were conducted at room temperature using two kinds of granites (biotite granite and garnet-bearing granite), de-ionized water. surface water. Water/rock ratio was 1:1. For comparison, we also performed another experiment under water/rock condition of 10:1. Then, the concentration of the cations and anions in the solutions showed severe variation during water/rock interaction. However, after sometime, the $^{87}Sr/^{86}Sr$ ratio of the solution moved to the $^{87}Sr/^{86}Sr$ ratio of the rocks and showed relatively constant value. This suggests that the $^{87}Sr/^{86}Sr$ ratio between water and rock becomes to be stable faster than the elemental equilibration of the element in the solution, and is not affected by interaction condition. Therefore, $^{87}Sr/^{86}Sr$ ratio of the groundwater may be useful in calculating the mixing ratio between different aquifer.

Effects of different soil moisture conditions on growth, yield and stress index of adzuki bean from paddy field cultivation

  • Chun, Hyen Chung;Jung, Ki Yuol;Choi, Young Dae;Lee, Sang Hun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.337-337
    • /
    • 2017
  • Accurate and optimal water supply to cereal crop is critical in growing stalks and producing maximum yields. Excessive soil moisture may cause nutrient deficiencies and oxygen deficiency. Excessive soil water during crop growth stages results in decrease of yields. In Korea, the largest agricultural lands are paddy fields. Recently, upland crops are cultivated in paddy field soils to reduce overproduced rice in Korea. In order to success this policy, it is necessary to fully understand crop response to excessive soil moisture condition from paddy field soils. Adzuki bean is one of major legumes which provide protein in daily diet. Adzuki bean has been well know its weakness to excessive soil moisture condition, In order to obtain optimal yields of adzuki bean from paddy field cultivation, it is necessary to understand response of adzuki bean under different soil moisture conditions. This study investigated characteristics of growths, yields and response degree of water stress from adzuki bean. Three cultivars were selected for this study; Chungju, Hongeon, and Arari. All adzuki beans were cultivated in a paddy field which was divided into three sections with different soil moistures. The paddy field was located in Milyang, Gyeongsangnam during 2016. One section of the paddy field had the greatest average soil moisture content as 35.1% during adzuki bean cultivation (very poor). The second greatest soil moisture section had 32.6% (somewhat poor) and the smallest soil moisture section had 28.9% of soil moisture (somewhat well). During cultivation of three cultivar adzuki beans, soil moisture contents and groundwater levels were monitored. All the characteristics of growth and yield components were measured; height, thickness, 100 seed weights etc. Stress index values were calculated by Stress Day Index (SDI). All cultivars had the greatest yields from somewhat well section. Chungju had the greatest yields throughout all three sections compared to other cultivars. Chungju had 81% greater yield than Hongeon which had the smallest yield from somewhat well section. Arari set in middle from all sections. However there was no significant differences yields from very poor and somewhat poor sections. Leaf SPAD values tended to decrease and stable carbon isotope values increased as soil moisture increased. However, Chungju had no difference across different soil moistures in SPAD and stable carbon isotope values, while Hongeon had the greatest differences across sections. These trends followed by SDI values. Chungju had the smallest SDI values compared to other cultivars, which meant that Chungju was the strongest tolerance against excessive soil moisture than other cultivars. All three cultivars showed severe decrease of yields from very poor and somewhat poor sections. Arari and Hongeon showed great decrease from somewhat well section compared to yields from upland soil. These two cultivars may not be proper cultivating in paddy fields. In conclusion, adzuki bean is very sensitive to soil moisture condition and detailed soil managements are required to obtain optimal yields of adzuki bean from paddy field cultivation.

  • PDF

Characteristics of Quality and Flow of Water Resources at Palaces in Seoul Metropolitan (서울 시내 궁궐 수원의 수질과 유동 특성)

  • Naranchimeg., B;Lee, Jae-Min;Woo, Nam-C.;Kim, Youn-Tae;Lee, Kang-Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.2
    • /
    • pp.61-76
    • /
    • 2011
  • This study was objected to provide suggestions for best management practices to restore the cultural and historical values of the wells in Palaces as well as their water qualities. Water resources in the five Palaces in Seoul Metropolitan, including Gyeongbokgung, Changdeokgung, Changgyeonggung, Jongmyo Shrine, and Deoksugung, were surveyed for their physical flows and chemical compositions from April to July in 2010. Ground waters in most wells were found at depths within 5 m from the ground surface, showing typical water-table aquifer systems. Hydraulic gradients indicate water resources in Gyeongbokgung, Changdeokgung, and Changgyeonggung flowing toward south, and toward east in Deoksugung area. Especially, water-level fluctuation data at S-10 in Deoksugung implied the influence of groundwater discharge facility. In Jongmyo Shrine, water was not detected in wells, indicating the water level was lower than the well depth. Based on the water chemistry and stable isotope analyses, water resources and their qualities appeared to be formed by the water-rock interaction along the groundwater paths. S-10 (Deoksugung) and S-14 (Changgyeonggung) samples were contaminated with nitrate ($NO_3$) in levels of higher than Korean drinking water standard, 10 mg/L as $NO_3$-N, but once in four sampling campaigns. In the situation that water resources in Palaces still maintain natural characteristics, the materials that will be used for the restoration and improvement of the Palace water supplies should be carefully selected not to disturb the natural integrity. In addition, because the wells are located in the center of metropolitan area, a systematic monitoring should be applied to detect and to manage the potential impacts of underground construction and various pollution sources.

Stable Isotope Measurement of Ammonium Using HPLC-RTS (high performance liquid chromatography-retention time shift) (HPLC-RTS (high performance liquid chromatography-retention time shift)를 이용한 암모늄 이온의 안정동위원소 측정방법의 개선)

  • An, Soonmo;Lee, Jiyoung;Gardner, Wayne S.
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.1
    • /
    • pp.47-52
    • /
    • 2013
  • Despite the usefulness of nitrogen isotope tracer experiments in nitrogen cycling studies, there are not such many measurement data mainly due to the difficulties in analytical methods. Although Gardner et al. (1996) developed a relatively simple and accurate method that can measure ammonium isotope using HPLC and used it widely in various N dynamics studies, the technique was not adopted to other laboratories. An HPLC-RTS system using updated HPLC pumps that can perform the same measurements as that of Gardner et al. (1996) was built. The result of standard sample showed linear increase of RTS with the $^{15}N$ proportions. Centroid retention times calculated with Matlab$^{(R)}$ program enhanced the linearity of the response. In a sea water incubation experiment spiked with $^{15}NH_4{^+}$, the uptake and regeneration of ammonium could be separately estimated using the temporal change of $^{15}N/^{14}N$.

Ore Minerals, Fluid Inclusion and Stable Isotope Studies of the Buyeong Gold-silver Deposit, Republic of Korea (부영 금-은광상의 광석광물, 유체포유물 및 안정동위원소 연구)

  • Lee, Gill-Jae;Yoo, Bong-Chul;Lee, Jong-Kil;Chi, Se-Jung;Lee, Hyun-Koo
    • Economic and Environmental Geology
    • /
    • v.42 no.6
    • /
    • pp.513-525
    • /
    • 2009
  • The Buyeong gold-silver deposit consists of quartz veins that fill along the NS fault zone within Cretaceous Goseong formation. Mineralization can be divided into hypogene and supergene stages. Hypogene stage is associated with hydrothermal alteration minerals such as sericite, pyrite, chlorite, epidote and sulfides such as pyrite, pyrrhotite, marcasite, sphalerite, chalcopyrite, galena and galenobismutite. Supergene stage is composed of malachite, goethite, chalcocite, and sphalerite oxide. Fluid inclusion data indicate that homogenization temperatures and salinities range from 112 to $340^{\circ}C$ and from 0.2 to 7.9 wt.% NaCl, respectively. Sulfur(3.2~3.9‰) isotope composition indicates that ore sulfur was derived from mainly magmatic source as well as partly host rocks. The calculated oxygen(4.3~6.0‰) and hydrogen(-60~-64‰) isotope compositions indicate that hydrothermal fluids may be meteoric origin with some degree of mixing of another meteoric water for paragenetic time.

Hydrological Characteristics of the Underground Discharge at Moolgol in Dokdo, Korea (독도 물골 지하유출수의 수문학적 특성)

  • Woo, Nam C.;Lee, Dong Y.;Park, Jong H.;Kim, Yoon B.;Woo, Min S.;Park, Chan H.
    • Economic and Environmental Geology
    • /
    • v.55 no.1
    • /
    • pp.45-51
    • /
    • 2022
  • Whether Dokdo can sustain human habitation or economic life of their own plays an important role to the legal status of the island in the international maritime law. This study reports the hydrological survey results regarding the water resource of the island occurred at Moolgol in Seodo. The amount of underground discharge at Moolgol was estimated at least 1.1 m3/d, conforming the results of previous studies. Based on the oxygen and hydrogen isotope ratios of water, the discharge appeared to originate from precipitation, and about 36% of the daily precipitation moves fast to the Moolgol through the joints developed in the volcanic bedrocks. Quality of the discharged water shows relatively higher concentrations in Cl and NO3 to be used for drinking and domestic purposes, probably affected by the sea spray and waves from surrounding sea and the birds' excretion such as black-tailed gulls.

The Hydrochemical and Stable Isotope Characteristics of Shallow Groundwater Near the Gwangju Stream (광주천 인근 천부 지하수의 수리화학 및 안정동위원소 특성)

  • Yoon, Wook;Ji, Se-Jung;So, Chil-Sub
    • Economic and Environmental Geology
    • /
    • v.36 no.6
    • /
    • pp.441-455
    • /
    • 2003
  • The most common water types are found to be Ca-$HCO_3$, Ca-Na-$HCO_3$ and Ca-Na-$HCO_3$-Cl in Gwangju groundwater. Groundwater near the Gwangju stream are characterized Ca-Cl water type, with over 50 mg/L of C1- and 400 ${\mu}$S/cm of EC. The systematic variation of $Cl^-$, $HCO_3^-$,- EC and ${\gamma}^{18}O$ values in groundwater with distance away from drainages is caused by streamwater infiltration. Stable isotope data indicate that ${\gamma}$D and ${\gamma}^{18}O$ values of groundwaters near drainages were enriched by evaporation effect, showing a equation of ${\gamma}$D=7. 1${\times}{\gamma}^{18}O$-1. ${\gamma}^{18}O$ values over -6${\textperthansand}$ are anomalous in the unconfined groundwater zones, which are influenced by the local surface water enriched in $^{18}O$ composition. Groundwater in highland shows remarkably light ${\gamma}^{18}O$ values below -8$\textperthousand$. The infiltration of streamwater is dominant in unconfined alluvium aquifer near drainages. ${\gamma}^{13}$CDIC values (-17.6∼-15.2$\textperthousand$) of groundwaters near drainages revealed that dissolved inorganic carbon (DIC) is predominantly originated from natural soil-derived $CO_2$. ${\gamma}^{15}N$ and ${\gamma}^{18}O$ values of nitrate are 0∼17.0${\textperthansand}$ and 6.6∼17.4${\textperthansand}$, respectively. Relationship between ${\gamma}^{15}N$ and ${\gamma}^{18}O$ shows a systematic isotopic fractionation caused by denitrification of 40∼60%, suggesting that the major source of groundwater nitrate originated from nitrate of soils, and mixing nitrate of soil and sewage or manure.