• Title/Summary/Keyword: Water speed

Search Result 2,504, Processing Time 0.044 seconds

A Study on Predicting the Range of Cooling Effect and the Diffusion of Water Particles that are Generated from a Fountain (분수에서 생성되는 물입자의 확산과 냉각효과의 범위 예측)

  • Lee, Sang-Deug
    • Journal of Environmental Science International
    • /
    • v.20 no.7
    • /
    • pp.819-828
    • /
    • 2011
  • This research was done to clarify the cooling effect of water particles generated from a fountain. This effect is a one way to control the heat island effect of big cities. The result of this research was drawn by setting the jets of water in a certain height, and then studying the diffusion of water particles, which is affected by the size of the particles and the wind speed, and the cooling effect caused by the diffusion. 1) When a diameter of a water drop was 500 ${\mu}m$ and the wind speed was 2.0 to 6.0 m/sec, the water drop diffused 75 to 190m, and the water vapor spread over 175 to 440 m. As a result, there was more than $0.5^{\circ}C$ of cooling effect on the temperature in the atmosphere 130 to 330m around the water fountain. 2) When a diameter of a water drop was 750 ${\mu}m$ and the wind speed was 2.0 to 6.0 m/sec, the water drop diffused 65 to 150 m, and the water vapor spread over 160 to 405 m. Moreover, there was more than $0.5^{\circ}C$ of cooling effect on the temperature in the atmosphere 110 to 275 m around the water fountain. 3) After studying on the relationship between the diameter of water drop and the wind speed, and the diffusion of water particles and the range of the atmosphere that was cooled, a result could be drawn from the research that the smaller the diameter of the water vapor gets and the faster the wind speed becomes, the wider the water particles diffuse and the cooler the atmosphere around the fountain becomes. 4) This research further extrapolates that when the ordinary water(tap water, water from river and stream) is used in a fountain, the cooling effect of the air near the fountain can be approached similarly. If the seawater is used in a fountain, there is to be more to concern not only on cooling effect on the air, but also on other effects on surrounding environment generated by the salt in seawater.

Numerical investigation of water-entry characteristics of high-speed parallel projectiles

  • Lu, Lin;Wang, Chen;Li, Qiang;Sahoo, Prasanta K.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.450-465
    • /
    • 2021
  • In this study, an attempt has been made to investigate the water-entry characteristics of the high-speed parallel projectile numerically. The shear stress transport k-𝜔 turbulence model and the Zwart-Gerber-Belamri cavitation model based on the Reynolds-Averaged Navier-Stokes method were used. The grid independent inspection and grid convergence index is carried out and verified. The influences of the parallel water-entry on flow filed characteristics, trajectory stability and drag reduction performance for different values of initial water-entry speed (𝜈0 = 280 m/s, 340 m/s, 400 m/s) and clearance between the parallel projectiles (Lp = 0.5D, 1.0D, 2.0D, 3.0D) are presented and analyzed in detail. Under the condition of the parallel water-entry, it can be found that due to the intense interference between the parallel projectiles, the distribution of cavity is non-uniform and part of the projectile is exposed to water, resulting in the destruction of the cavity structure and the decline of trajectory stability. In addition, the parallel projectile suffers more severe lateral force that separates the two projectiles. The drag reduction performance is impacted and the velocity attenuation is accelerated as the clearance between the parallel projectiles reduces.

Temporal and Spatial Variability of Sound Speed in the Sea around the Ieodo (이어도 주변해역에서 수중음속의 시공간적 변동성)

  • Park, Kyeongju
    • Journal of Environmental Science International
    • /
    • v.29 no.11
    • /
    • pp.1141-1151
    • /
    • 2020
  • The impact of sound speed variability in the sea is the very important on acoustic propagation for the underwater acoustic systems. Understanding of the temporal and spatial variability of ocean sound speed in the sea around the Ieodo were obtained using oceanographic data (temperature, salinity). from the Korea Oceanographic Data Center, collected by season for 17 years. The vertical distributions of sound speed are mainly related to seasonal variations and various current such as Chinese coastal water, Yellow Sea Cold Water (YSCW), Kuroshio source water. The standard deviations show that great variations of sound speed exist in the upper layer and observation station between 16 and 18. In order to quantitatively explain the reason for sound speed variations, Empirical Orthogonal Function (EOF) analysis was performed on sound speed data at the Line 316 covering 68 cruises between 2002 and 2018. Three main modes of EOFs respectively revealed 55, 29, and 5% the total variance of sound speed. The first mode of the EOFs was associated with influence of surface heating. The second EOFs pattern shows that contributions of YSCW and surface heating. The first and second modes had seasonal and inter-annul variations.

Efficiency Analysis for Water Turbine Generator of Agricultural Reservoir (농업용 보의 수차 발전기 효율 분석)

  • Kim, Jong-Gyeum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.9
    • /
    • pp.1223-1227
    • /
    • 2013
  • If the factory test efficiency and field operation efficiency of water turbine are different from each other, issues for efficiency warranty can be raised. So, This paper shows the result for comparative analysis of field operating efficiency vs plant testing efficiency of the water turbine generator installed in agricultural reservoir. The efficiency of the induction generator is analyzed by the change of rotational speed with the parameter obtained by test, the efficiency of water turbine is calculated by the change of head with the design flow. Efficiency deviation of induction generator is lower but the variation of developed power is pretty high near the rated speed and the efficiency variation of water turbine is high by the fluctuation of head for constant flow. It was found that factory test efficiency and total efficiency of water turbine generator calculated according to the rotational speed are very close.

Modelling of evaporation from free water surface

  • Song, Wei-Kang;Chen, Yibo
    • Geomechanics and Engineering
    • /
    • v.21 no.3
    • /
    • pp.237-245
    • /
    • 2020
  • The process of evaporation from free water surface was simulated in a large scale environmental chamber under various controlled atmospheric conditions and also was modelled by a new mass transfer model. Six evaporation tests were conducted with increasing wind speed and air temperature in the environmental chamber, and hence the effect of atmosphere parameters on the evaporation process and the corresponding response of water were investigated. Furthermore, based on the experiment results, seven general types of mass transfer models were evaluated firstly, and then a new model consisted of wind speed function and air relative humidity function was proposed and validated. The results show that the free water evaporation is mainly affected by the atmospheric parameters and the evaporation rate increases with the increasing air temperature and wind speed. Both the air and soil temperatures are affected by the energy transformation during water evaporation. The new model can satisfactorily describe the evaporation process from free water surface under different atmospheric conditions.

Experimental Validation on Underwater Sound Speed Measurement Method Using Cross-Correlation of Time-Domain Acoustic Signals in a Reverberant Water Tank (잔향 수조에서의 시간 이력 수음 신호 간 교차상관을 이용한 수중 음속 계측 방법에 관한 실험적 검증)

  • Joo-Yeob Lee;Kookhyun Kim;Sung-Ju Park;Dae-Seung Cho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • Underwater sound speed is an important analysis parameter on an estimation of the underwater radiated noise (URN) emitted from vessels. This paper aims to present an underwater sound speed measurement procedure using a cross-correlation of time-domain acoustic signals and validate the procedure through an experiment in a reverberant water tank. For the purpose, time-domain acoustic signals transmitted by a Gaussian pulse excitation from an acoustic projector have been measured at 20 hydrophone positions in the reverberant water tank. Then, the sound speed in water has been calculated by a linear regression using 190 cross-correlation cases of distances and time lags between the received signals and the result has been compared with those estimated by the existing empirical formulae. From the result, it is regarded that the presented experimental procedure to measure an underwater sound speed is reliably applicable if the time resolution is sufficiently high in the measurement.

A comparison study on the deck house shape of high speed planing crafts for air resistance reduction

  • Park, Chung-Hwan;Park, Hee-Seung;Jang, Ho-Yun;Im, Namkyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.867-875
    • /
    • 2014
  • Planing crafts were specifically designed to achieve relatively high speeds on the water. When a planing craft is running at high speed, dynamic pressure on the bottom makes the boat rise on the surface of the water. This reduces the area of the sinking surface of the boat to increase air resistance. Air resistance means the resistance that occurs when the hull and deck house over the surface of the water come in contact with the air current. In this paper, we carried out a CFD numerical analysis to find optimal deck houses that decreased air-resistance on the water when planing crafts are running at high speed. We finally developed the deck house shape of high-speed planing crafts that optimally decreased air resistance.

Prediction of Manoeuvrability of a Ship with Low Forward Speed in Shallow Water (천수 영역에서 저속 운항하는 선박의 조종성능 추정에 관한 연구)

  • Kim, Se-Won;Yeo, Dong-Jin;Rhee, Key-Pyo;Kim, Dong-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.3
    • /
    • pp.280-287
    • /
    • 2008
  • In this paper, a mathematical model for a ship manoeuvring with low forward speed in shallow water was suggested. Based on the cross flow model with low forward speed in deep sea, hull, propeller and rudder models were modified to consider the shallow water effects. Static drift and PMM tests were performed to obtain the cross flow drag coefficients and hydrodynamic coefficients. To validate suggested mathematical model, numerical simulation results were compared with those of sea-trials. Through comparisons, it was concluded that suggested mathematical model could give proper estimation on turning test results.

Water Lubrication Characteristics and Effect of Nano Particles based on the Substrate (기판 종류에 따른 물 윤활 특성 및 나노 입자의 영향)

  • Kim, Hye-Gyun;Kim, Tae-Hyung;Kim, Jongkuk;Jang, Young-Jun;Kang, Yong-Jin;Kim, Dae-Eun
    • Tribology and Lubricants
    • /
    • v.33 no.6
    • /
    • pp.245-250
    • /
    • 2017
  • In this work, we examine pure water and water with nanoparticles to investigate water lubrication characteristics and the effect of nanoparticles as lubricant additives for different substrates. We test carbon-based coatings and metals such as high-speed steel and stainless steel in pure deionized (DI) water and DI water with nanoparticles. We investigate water lubrication characteristics and the effect of nanoparticles based on the friction coefficient and wear rate for different substrates. The investigation reveals that nanoparticles enhance the friction and wear properties of high-speed steel and stainless steel. The friction coefficient and wear rate of both high-speed steel and stainless steel decreases in DI water with nanoparticles compared with the results in pure DI water. The presence of nanoparticles in water show good lubricating effect at the contact area for both high-speed steel and stainless steel. However, for carbon-based coatings, nanoparticles do not improve friction and wear properties. Rather, the friction coefficient and wear rate increases with an increase in the concentration of nanoparticles in case of water lubrication. Because carbon-based coatings already have good tribological properties in a water environment, nanoparticles in water do not contribute toward improving the friction and wear properties of carbon-based coatings.

An Analysis of Design Factors for Developing Opuntia Humifusa Spines Removal Device

  • Jang, Ik Joo;Ha, Yu Shin
    • Journal of Biosystems Engineering
    • /
    • v.38 no.3
    • /
    • pp.215-221
    • /
    • 2013
  • Purpose: Opuntia Humifusa has been used in the food and beauty industry after removing spines and glochids clearly. This study compared the methods used in removing spines and analyzed the design factors for developing a spine removal device. Method: This study compared the spine removal ratios in accordance with the length of brush, water spray pressure, the number of water spray, and the size of Opuntia Humifusa in a rotating brush device and a water spray device. In addition, this study compared the reversal ratios according to the inclination angle of a conveyor, the drop height of Opuntia Humifusa, and the speed of the conveyor to analyze the reversal factors. Results: The spines were not removed clearly in the rotating brush method, and the glochids were nailed deeply. The spine removal ratio was 96.9% with the water spray pressure of 20 $kgf/cm^2$ and the conveyor speed of 10 cm/s in the water spray method. The number of water spray was correlated with the spine removal ratio, and the average spine removal ratio was 95.6% with three cycles of water spray. The reversal ratio was 97% with the inclination angle of the conveyor $20^{\circ}$, the drop height of 380 mm, and the conveyor speed of 10 cm/s. Conclusions: In order to develop a Opuntia humifusa spine removing device, this study compared the rotating brush and water spray methods. As a result, each spine removal performance of the rotating brush and water spray methods was 96.9% and 95.6%, respectively. Although the performance of the rotating brush method was slightly higher than that of the water spray method, the water spray method was suitable for removing spines from stem because the epidermis of stem was damaged and the glochids were nail deeply in the rotating brush method. Further studies on appropriate arrangement of spray nozzles, maintaining the optimal water spray pressure, the speed and angle control of the feeding conveyor, and devices for inducing the stem to the center will be needed in combining the water spray device and the reversal device.