• 제목/요약/키워드: Water source energy

검색결과 920건 처리시간 0.037초

물-공기 히트펌프 시스템의 부분부하 난방운전 특성 (Performance Characteristics of Water-to-Air Heat Pump under Partial Load Heating Operation)

  • 조용;이남영;김용열;김대근;정응태
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.170.1-170.1
    • /
    • 2010
  • Performance of water-to-air heat pump using raw water has been analyzed under part load heating operation in March, 2010. The water source heat pump of 30 RT was installed for 24 hours cooling and heating ventilation, and the gravity inflow water from Daechung dam is used as the heat source. The daily averaged water and air temperatures are $5.7^{\circ}C$ and $9.9^{\circ}C$ respectively, and the heat pump is operated under part load condition for 7.5 hours in 24 hours. The daily averaged heat pump COP calculated with heat transferred from the brine water is 2.49 and the monthly averaged COP is 2.25 in March. Based on the database of the California Energy Commission, the monthly averaged COPs of air source heat pumps installed in U.S.A. are 1.97 in March and 2.03 in April. Therefore it is confirmed again that the performance of the heat pump using raw water is better than that of air source heat pumps.

  • PDF

에너지 수요처의 사용특성에 따른 태양열 급탕시스템의 효율분석 (Analysis of Efficiency of Solar Hot Water System based on Energy Demand)

  • 전용준;박경순
    • 한국태양에너지학회 논문집
    • /
    • 제37권5호
    • /
    • pp.39-47
    • /
    • 2017
  • In a hot water system using solar energy, solar heat is not simply collected by the heat collecting plate, but by heat exchange between the solar collector (flat or vacuum type) and the hot water storage tank. Therefore, the amount of collected solar energy depends on the hot water usage patterns that determine the temperature of the thermal storage tank. Also, if the temperature of the hot water stored in the storage tank exceeds the dangerous temperature during the summer, the heat must be released for safety. If the temperature of the hot water in the storage tank is low, it is necessary to heat by the auxiliary heat source. In this study, three buildings are defined as hotel, swimming pool, and school facilities. And we calculated the released heat energy, auxiliary heat source, and pure storage heat energy based on different hot water usage patterns and installation angle of the solar collectors.

펄스전원장치를 이용한 수산화 가스 발생 특성 연구 (A Study on the Generating feature of Hydrogen Oxygen Gas Using Pulse Power Supply)

  • 양승헌;김경현;전윤석;목형수;최규하
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2002년도 추계학술대회 논문집
    • /
    • pp.89-93
    • /
    • 2002
  • Hydrogen - Oxygen gas has obtained from water electrolysis reaction. It is mixed gas havingconstant volume ratio 2:1 Hydrogen and Oxygen, and it is used as a source of thermal energy by combustion reaction. This gas has betterristics in the field of economy, efficiency of energy, and environmental intimacy than used both of acetylene gas and LPG for gas welding machin. So nowdays many studies of Water-Electrolyzed gas are progressed, and commercially used as a source of thermal energy for gas welding In the industry. For Water-Electrolyzed Source, it was used diode rectifier or SCR rectifier for get DC source. This method which is not looking to improve a source for impossible current control or voltage and limited control intervals. In this paper, it was relized and designed in source of pulse type for complementing existing-DC source type, also by experiment it was acquired producting characteristics of Hydrogen -Oxygen Gas through feature of source

  • PDF

중앙냉난방시스템의 EMS 복합제어 효과 분석에 관한 시뮬레이션 연구 (A Simulation Study on Effect Analysis of EMS Combined Control of Central Cooling and Heating System )

  • 송재엽;안병천
    • 한국지열·수열에너지학회논문집
    • /
    • 제18권4호
    • /
    • pp.33-44
    • /
    • 2022
  • In this study, we analyze the existing heating and cooling operation method for an office-type complex building with a central heating and cooling system, and examine the effects of applying various EMS that can be applied according to the load size to save energy in the building. For this purpose, simulation analysis was performed. As a control method, reset control of chilled water, hot water, cooling water and supply air temperatures, optimal start/stop of heat source, and number of heat source control were applied according to the load size, and energy consumption was analyzed accordingly. In addition, when all of these control methods were applied, the overlapping energy saving effect was finally confirmed. As a result, it was possible to confirm the energy saving effect when EMS for reset control and heat source control were applied compared to the existing control method of the heating and cooling system, and the effect for the case of using all these control methods in combination was also confirmed.

작동유체에 따른 온도차발전사이클의 성능 해석 (Performance Analysis of Ocean Thermal Energy Conversion on Working Fluid Classification)

  • 이호생;문정현;김현주
    • 동력기계공학회지
    • /
    • 제20권2호
    • /
    • pp.79-84
    • /
    • 2016
  • The thermodynamic performance of ocean thermal energy conversion with 1 kg/s geothermal water flow rate as a heat source was evaluated to obtain the basic data for the optimal design of cycle with respect to the classification of the working fluid. The basic thermodynamic model for cycle is rankine cycle and the geothermal water and deep seawater were adapted for the heat source of evaporator and condenser, respectively. R245fa, R134a are better to use as a working fluid than others in view of the use of geothermal water. It is important to select the proper working fluid to operate the ocean thermal energy conversion. So, this paper can be used as the basic data for the design of ocean thermal energy conversion with geothermal water and deep seawater.

구형용기의 하부면 냉각에 의한 해수 동결거동의 기초적 연구 (A Fundamental Study on Sea Water Freezing Behavior in a Rectangular Vessel Cooled from Below)

  • 김명준;길병래;김명환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제21권5호
    • /
    • pp.564-570
    • /
    • 1997
  • The most important factor for the desalination system is the fresh water production cost dependent upon the possible energy source which should be obtained easily and with low price. Recently in Korea the demand of LNG, as a cheap and clean energy which does not cause an environmental problem, has sharply been increased. In general, LNG is storaged in a tank as a liquid state below -162 'C. When it is serviced, however, the LNG absorbs energy from a heating source and transforms to the gaseous state with high pressure. During this process a huge amount of cold energy accumulated in LNG is wasted. This waste cold energy can be utilized for producing fresh water from sea water using a sea water freezing desalination system. In order to develop a sea water freezing desalination system and to establish its design technique, a qualitative and quantitative data regarding the freezing behavior of sea water is needed in advance. The goal of this study, therefore, are to reveal the freezing mechanism of sea water, to measure the freezing rate, and to investigate the freezing heat-transfer characteristics. The experimental results help to provide a general understanding of the sea water freezing behavior in a Rectangular vessel cooled from below.

  • PDF

태양에너지 해수담수화시스템에의 적용을 위한 판형 해수담수기의 열성능에 관한 실험적 연구 (Experimental Study on Thermal Performance of Palte-type Fresh Water Generator for applying Solar Energy Desalination System)

  • 김정배;곽희열
    • 한국태양에너지학회 논문집
    • /
    • 제27권4호
    • /
    • pp.35-41
    • /
    • 2007
  • To demonstrate the desalination system, the demo-plant was scheduled to be installed. The system was planned to use solar thermal collector as heat source and PV as electricity source. For the design of the desalination demonstration system, firstly the solar thermal system would be well designed from the result between the supplied heat into the fresh water generator and the fresh water yield. The generator for demonstration system was chosen as the fresh water generator of the single stage and effect with plate-type heat exchanger using low pressure evaporation method. The test facility for the tests to reveal the relationship between the fresh water yield and the supplied heat flow rate was designed and manufactured. The maximum fresh water yield of two fresh water generators applied in this study was designed as 1.5 Ton/day. The parameters relating with the performance of fresh water generator are known as sea water inlet temperature, hot water inlet temperature, and hot water flow rate. Through the experiments, this study firstly showed detail operation characteristics of the generator and designed the solar thermal system for the demonstration system.

하수처리수를 이용한 2단 압축 열펌프 시스템의 운전특성에 관한 연구 (A Study on The Operation Characteristics of 2-Stage Compression Heat Pump using Treated sewage)

  • 김지영;백영진;이영수;장기창;나호상
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.299-303
    • /
    • 2008
  • The treated sewage temperature is about $5^{\circ}C$ lower in summer and $5{\sim}10^{\circ}C$ higher in winter than ambient air. It can be used heat pump heat source and is good heat source on high performance of heat pump. In this study, to develop 100RT 2-stage compression heat pump use treated sewage water heat source and system applies to sewage disposal plant. Although heat pump is better performance, the large temperature difference between load and source makes the performance degradation of a heat pump. To solve this problem screw 2-stage compression is considered. The experiment was focused on the system operating performance variations over supply water and treated sewage water a temperature in the field. The results show that system of heating performance is higher then general heat pump and is enough to supply a hot water of $70^{\circ}C$.

  • PDF

친환경 도시에서의 자원활용에 관한 연구 -빗물의 다목적 활용을 위한 빗물저장조의 운전방법 - (Study on Utilizing Resources in Environment-friendly City - Operation method of rain storage tank for using rainwater as multipurpose -)

  • 정용현
    • 한국환경과학회지
    • /
    • 제12권3호
    • /
    • pp.359-366
    • /
    • 2003
  • Ecological society and energy conservative systems has become a subject of world wide attention. To examine the technologies of such systems as resource recycling society, this study is proposed for using rainwater as energy source and water resources in urban area. Useful informations for planning of utilizing rainfall as energy source, water resources, emergency water and controlling flood are discussed with model systems in urban area. It is calculated that the rate of utilizing rainwater, amounts of utilizing rainwater, substitution rate of supply water, amounts of overflow rainwater according to rain storage tank volume. By applying the past weather data, The optimum volume of rain water storage was calculated as 200m$^3$ which mean no benefits according to the increase of storage tank volumes. For optimum planing and control method at the model system, several running method of rainwater storage tank was calculated. The optimum operating method was the using weather data as 3hours weather forecast.

물 대 물 방식 수직 밀폐루프 지열원 히트펌프 시스템의 냉방성능에 대한 실험적 연구 (Experimental Study on the Cooling Performance of Vertical Closed Loop Water to Water Ground Source Heat Pump System)

  • 홍부표;최광환
    • 한국태양에너지학회 논문집
    • /
    • 제34권1호
    • /
    • pp.58-63
    • /
    • 2014
  • A vertical closed loop ground source heat pump (GSHP) is used to produce heat from the low-grade energy source such as the outside air and ground source. It is known that a heat pump system type has better efficiency comparing to the electric heating system. This study only demonstrates that the vertical closed loop GSHP system is a feasible choice for space cooling of air conditioning. The coefficient of performance (COP) is the ratio of heat output to work supplied to the system in the form of electricity. For the vertical closed loop GSHP system in a cooling mode, the COP is the most commonly used way for judging the efficiency. For the purpose of this experiment, vertical closed loop GSHP system was installed in the laboratory and the experiment was executed. As a result, an average COP of vertical-closed loop GSHP system was 3.62 when the outside average temperature was $33^{\circ}C$.