• Title/Summary/Keyword: Water repellent soil

Search Result 10, Processing Time 0.026 seconds

ANOVA for Water Repellent Finish data (발수가공 데이터의 분산분석)

  • Yun, Jung-Beom
    • Journal of Korean Society for Quality Management
    • /
    • v.16 no.1
    • /
    • pp.43-48
    • /
    • 1988
  • Most of silicone used for water repellent finish is MHP (methyl hydrodiene polysiloxane), which is formed by hydrolysis and condensation polymerization of MHD (methyl hydrodiene dichlorosilane: Me H Si $Cl_2$). The cross-linking theory explains the water repellent mechanism of MHP. The silicone finish on fiber could improve in handle, softness, abrasion resistance, soil repellency, tear strength and crease resistance, as well as water repellency. According to using method silicone-water repellent finishing agents, could be devided into air dry type and curing type. MHP is the typical curing type of water repellent finishing agent, and this type requires the curing temperature above $150^{\circ}C$ at least. High curing temperature is the very drawback of this curing type. For this reason, there has been global interest in the lowering of its temperature. The objective of this study is to investigate merits of alkali treatment for silicone finishing by ANOVA and LSD (least significant difference).

  • PDF

Adsorption and Transfer of Trace Elements in Repellent Soils (토양 소수성에 따른 미량원소의 흡착 및 이동)

  • Choi, Jun-Yong;Lee, Sang-Soo;Ok, Yong-Sik;Chun, So-Ul;Joo, Young-Kyoo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.204-208
    • /
    • 2012
  • Water repellency which affects infiltration, evaporation, erosion and other water transfer mechanisms through soil has been observed under several natural conditions. Water repellency is thought to be caused by hydrophobic organic compounds, which are present as coatings on soil particles or as an interstitial matter between soil particles. This study was conducted to evaluate the characteristics of the water repellent soil and transport characteristics of trace elements within this soil. Capillary height of the water repellent soil was measured. Batch and column studies were accompanied to identify sorption and transport mechanism of trace elements such as $Cu^{2+}$, $Mn^{2+}$, $Fe^{2+}$, $Zn^{2+}$ and $Mo^{5+}$. Difference of sorption capacity between common and repellent soils was observed depended on the degree of repellency. In the column study, the desorption of trace elements and the spatial concentration distribution as a function of time were evaluated. The capillary height was in the repellency order of 0% > 15% > 40% > 70% > 100%. No water was absorbed in soil indicating >70% repellency. Using trace elements, $Fe^{2+}$ and $Mo^{5+}$ showed higher sorption capacity in the repellent soil than in non-repellent soil. The sorption performance of $Fe^{2+}$ was found to be in the repellency order of 40% > 15% > 0%. Our results found that transfer of $Mo^{5+}$ had similar sorption tendency in soils having 0%, 15% and 40% repellency at the beginning, however, the higher desorption capacity was observed as time passes in the repellent soil compared to in non-repellent soils.

Change for Engineering Properties of Top Soils in the Wildfire Area (산불발생지역에서 상부토층의 공학적 특성 변화)

  • Song, Young-Suk;Chae, Byung-Gon;Kim, Kyoung-Su
    • The Journal of Engineering Geology
    • /
    • v.17 no.2 s.52
    • /
    • pp.225-233
    • /
    • 2007
  • The engineering properties of surface soils in natural terrain are changed due to wildfire. This change of engineering properties induced by wildfire is related to landslides occurrence. To investigate the change of soil properties caused by wildfire, the various soil tests are performed. The soil samples are obtained from the recently burned slopes of Yangyang area, Kangwon Province. The soil samples obtained from the burned slopes are classified into three types depending on the burning grade: the perfect burning grade, the intermediate burning grade, the non-burning grade. As the result of tests, the specific gravity and the dry unit weight of soils obtained from perfect and alternative burning grades are less than those of soils obtained from non-burning grade. It judges that an electronic force, ionic components and of soils are changed and organic matters in soils are burned by wildfire. The permeability of soil obtained from alternative burning grade is the lowest and that of soil obtained from perfect burning grade is the highest. The water-repellent layer is formed on soil surface by wildfire. The water-repellent layer is existed at the area of alternative turning grade, while the layer is not existed at the area of perfect burning grade. The water-repellent layer is collapsed in high temperature more than about $400^{\circ}C$.

Soil Resistant and Blood Repellent Finishes of Nonwoven Fabrics Using Foam (거품을 이용한 부직포의 방오방혈가공)

  • 이정민;배기서;노덕길;전병열
    • Textile Coloration and Finishing
    • /
    • v.4 no.3
    • /
    • pp.74-81
    • /
    • 1992
  • Chemical bonded nonwoven fabric for apparel use and spunlaced nonwoven fabric for medical use were finished for soil resistance and blood replellency with fluorochemicals utilizing foam finishing technology (FFT) and conventional padding application techniques. The FFT process improved soil and abrasion resistance properties of nonwoven fabrics compared with the conventional padding process. Excellent water-oil-saline-alcohol repellency values and water impact penetration values were obtained in the spunlaced nonwoven fabrics with both techniques.

  • PDF

Changes of Surface Characteristics of Polyester Fabrics on the Deposition and the Removal of Oily Soils (I) - The Effect of Wash Cycles on the Water- and Oil-repellent Finished Fabrics in Detergency - (유성오구의 부착과 제거에 있어서 폴리에스테르 직물의 표면특성 변화 (I) -발수발유 가공포의 반복세척 효과-)

  • 이정숙;하희정
    • Textile Coloration and Finishing
    • /
    • v.11 no.6
    • /
    • pp.24-35
    • /
    • 1999
  • This study was carried out to investigate the changes of surface characteristics of polyester fabrics on the deposition and the removal of oily soils from polyester fabrics in detergency, The relations between the removal of soil and the changes of surface properties of polyester fabrics treated with water- and oil-repellent agents were discussed before and after various wash cycles. Two kinds of fluoropolymers were selected as water-and oil-repellent finishing agents. The effects of water- and oil-repellent finishes were determined by the water repellency and oil repellency. The surface properties of untreated and treated polyester fabrics were evaluated with respect to contact angle and wicking time. The treatment of polyester fabrics with fluoropolymers improved efficiently water repellency, oil repellency, contact angle and wicking time. But those properties were greatly decreased after 3 times of wash cycles in detergency The deposition of oily soils on the untreated fabrics was drastically increased with increasing of wash cycles. The deposition and the removal of oily soils from fabrics treated with fluoropolymer having hydrophobic components were very low after various wash cycles. The deposition and the removal of oily soils on the fabrics treated with fluoropolymer having hydrophilic components were high comparatively after various wash cycles. Even though the surface properties of treated fabrics were greatly decreased with the increasing of wash cycles, the remains of oily soils on the fabrics were lower than those of untreated fabrics in various wash cycles. But the remains of soils were drastically increased after 10 times of wash cycles in any cases.

  • PDF

Foam Application for Water and Oil Repellent Finishes (거품을 이용한 발수 발유가공)

  • 이정민;배기서;노덕길;김병미;이성애
    • Textile Coloration and Finishing
    • /
    • v.5 no.2
    • /
    • pp.125-133
    • /
    • 1993
  • This study was to investigate the application of foam finishing technology (FFT) for the silicone finishing of cotton fabrics and the tluorochemical finishing of polyester fabrics. The repellency properties, soil resistance properties and selected physical properties were demonstrated and compared the foam finishing with the conventional padding application. Amino-funetional silicone prorided better durability than epoxy-functional silicone and conventional reactive silicone after three launderings. Foam finishing fabrics improved stiffness but showed lower or equivalent water and oil repellency properties, soil resistance properties, tearing strength and abrasion resistance than those of the fabrics treated by conventional padding process. But, it was evident that the foam application of silicone and fluorochemical finishes to the fabrics were feasible.

  • PDF

Preparation and Evaluation of Self-cleaning Fabrics using Photocatalyst and Superhydrophobic Finishing (광촉매와 초발수 처리를 이용한 셀프클리닝 섬유의 제조 및 평가)

  • Jeong, Euigyung;Woo, Heejoo;Cho, Seungbin;Bae, Jin-Seok
    • Textile Coloration and Finishing
    • /
    • v.30 no.4
    • /
    • pp.288-293
    • /
    • 2018
  • This study reported the dual functional self-cleaning PET fabrics prepared from $TiO_2$ and hexadecyltrimethoxysilane treatment, which have photodegradation and superhydrophobicity on the fabric surface. Phodegradation and superhydrophobicity of the resulting fabric were compared with $TiO_2$ or silane treated fabrics. The dual functional self-cleaning PET fabric showed less photodegradation than the $TiO_2$ treated fabric. However, the dual functional self-cleaning fabrics showed superior superhydrophobicity to silane treated fabric with increased water contact angle and significantly decreased roll-off angle. This suggested that the dual functional PET fabric has a great potential to be the commercialized self-cleaning fabric because it is repellent to soil or dust and even if soil or dust is adsorbed on the fabric surface, it can be removed by water rolling off on the surface or photodegradation by the photocatalyst.

The Development of Winter Working Clothes for Stock Farming Worker (축산종사자를 위한 겨울용 농작업복 개발)

  • Hwang, Kyoung-Sook;Kim, Hyo-Cher;Chae, Hye-Seon;Lee, Kyung-Suk
    • The Korean Journal of Community Living Science
    • /
    • v.20 no.4
    • /
    • pp.515-522
    • /
    • 2009
  • This study was to develope the functional work clothing for livestock farmers. Major demanding performances for livestock work clothing are anti-soil and anti-bacterial properties. On surveys, functional fabrics that have anti-soil, anti-bacterial and waterrepellent performances were developed and the work clothing that have adaptability to body movements were manufactured. The designs of livestock working clothes were two piece and one piece with rubber bade in waist. The thermal responses of subjects wearing the winter working clothes for stock farming worker were measured in the climate chamber($17^{\circ}C$, 40% R.H.). The main results were summarized as follows: Total body weight loss was smaller and the mean skin temperature was higher in developed clothes than the market product. Clothing micro-climate of developed clothes was lower than the market clothes. Subjective sensation did not have significant differences. From the results of various evaluation, developed garments for livestock workers showed better efficiency than the market product.

  • PDF

A Study on the Evaluation Method of Soil Treatment Termiticide (흰개미 토양처리제 효과 평가 및 시험방안 연구)

  • Im, Ik Gyun;Jeong, Seon Hye;Chung, Yong Jae
    • Journal of Conservation Science
    • /
    • v.35 no.2
    • /
    • pp.177-186
    • /
    • 2019
  • A Termiticide that is applied to the soil treatment method, one of the methods for preventing termites in Korea's wooden cultural properties, will be subjected to the leaching of the effective ingredient in treated soil by the moisture behavior of rain. As a result, termiticide is deteriorated and needs to be reprocessed, but the standards and evaluation methods are nonexistent in korea. Accordingly, a basic indoor evaluation measure was proposed for the evaluation of the effectiveness of the termiticide chamber and the calculation of the reprocessing period. First, avoidance and contact toxicity were assessed at two concentrations of the same termiticide as a method for assessing termiticide suitability. The evaluation of mortality revealed that the soil termiticide used in this experiment was non-repellent, and that death from contact was confirmed. Afterwards, artificial rainfall and soil penetration tests were conducted to determine efficacy of termiticide in soil and the approximate reprocessing period was calculated by comparing the weather data. Persistence evaluation revealed perforation by termites after continuous water exposure of more than about 160 to 170mm of water injection condition. Based on the results, compared with weather data for the last five years, the termiticide of concentration used in this experiment is expected to remain effective for about one year if treated after September. The purpose of this study was to provide basic data for the establishment of a manual for the selection of termiticide for soil treatment by calculating the efficacy for termite mortality and the duration of the leaching effectiveness by water behavior in soil.

Emulsion Polymerization and Surface Properties of Perfluoroalkylethyl Acrylate/Acrylate/Glycidyl Methacrylate Copolymers (퍼플로오로알킬에틸아크릴레이트/아크릴레이트/그리시딜메타크릴레이트 공중합체의 유화중합 및 그들의 표면특성)

  • Yoon, Jong-Kook;Lee, Jung-Hee;Kim, Ji-Soo;Lee, Young-Hee;Lee, Dong-Jin;Kim, Han-Do
    • Clean Technology
    • /
    • v.18 no.2
    • /
    • pp.170-176
    • /
    • 2012
  • A series of acrylic copolymers containing perfluoroalkyl acrylate were synthesized by 2-step emulsion polymerization of variety of acrylate monomers (ethyl acrylate, butyl acrylate or methyl methacrylate) with perfluoroalkyl ethyl acrylate (PFA) and glycidyl methacrylate (GMA) monomers. This study focused on effects of monomer compositions (the kind of acrylate monomer, contents of PFA and GMA) and composition of surfactants [(sodium dodecyl sulphate/nonylphenol 10mole ethoxylate (NP-10)] and initiator content on the contact angles and surface free energy. It was found that the copolymer having an optimum composition (BA : 87 wt%, GMA : 8.7 wt% and PFA : 4.3 wt%) was shown to be quite surface active [surface free energy : 19.89 mN/m and contact angles : $103.5^{\circ}$ (water) and $78.7^{\circ}$ (methylene iodide)] in the solid state. This result suggests that the optimal copolymer containing fluorinated monomer synthesized in this study have high potential as a low surface energy material, which may have high oil- and water-repellent surface and have been proposed as acrylic syntan for leather and also as soil-resistant/oil and water repellent coating for textiles and wood etc.