• Title/Summary/Keyword: Water repellent coating

Search Result 47, Processing Time 0.03 seconds

Research on Water-Repellent Coating Materials to Prevent Solar Module Pollution (태양광 모듈 오염 방지를 위한 발수 코팅 물질에 대한 연구 )

  • Young-A Park;Da Yeon Jung;Hyun Chul Ki
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.182-187
    • /
    • 2024
  • Currently, the most developed new energy source is solar energy. Because solar power is installed outside, it is exposed to many pollutants. Pollutants are causing the characteristics of solar energy to deteriorate. Therefore, this study aims to develop a water-repellent coating to prevent contamination of solar modules. Silica and Titania materials are mainly used as water-repellent coating materials. In this study, it was based on silica and the contact angle characteristics were measured according to the change in the amount of silica and ammonia water added and the number of coatings. As a result of the measurement, it was confirmed that the contact angle was more than 60 degrees when 0.5 mol of TEOS was added to 50 mL and 0.15 M when 1 mL of ammonia water was added to 296.47 ml of distilled water. And it was confirmed that the contact angle improved when the number of coatings was applied twice. A water-repellent coating material was applied to low iron tempered glass used to protect dye-sensitized solar cell modules. The characteristics of the module were measured after spraying DI-Water on low-emission tempered glass with a water-repellent coating. As a result of the measurement, the efficiency of the module without application, the efficiency of the module coated once, and the module coated twice were 4.87%, 4.90%, and 4.91%, respectively. It was confirmed that the efficiency of the module increased by applying water-repellent coating. As a result of this study, it is determined that the water-repellent coating material will help improve solar power generation efficiency and lifespan by being self-cleaning and non-reflective.

Failure Analysis of Commercial Water-Repellent Coatings for High Temperature Plant (플랜트 부품용 상용 발수코팅의 고온 환경 고장 특성 비교 분석)

  • Lee, Byung-Ho;Kim, Hye-young;Hyeon, Chang-young;Byeon, Jai-Won
    • Journal of Applied Reliability
    • /
    • v.17 no.1
    • /
    • pp.78-82
    • /
    • 2017
  • Purpose: The purpose of this study is to evaluate failure characteristic and mechanism of four commercial water-repellent coatings for elevated temperature machinery applications. Method: Thermal degradation was performed for up to 64 thermal cycles. 1 cycle consists of 15 minute holding at 523K under 300rpm revolution and 15 minute-natural cooling. Contact angle was measured and microstructure of the coating layer was observed by using a scanning electron microscope. Results: Four kinds of commercial repellent coating showed hydrophobic or super-hydrophobic property implying that all coatings are suitable for room temperature application. Contact angle of three kinds of commercial coatings decreased rapidly after thermal exposure, while only one specimen having hydrophobic surface showed extremely slow degradation. Conclusion: Observed decrease in contact angle of the coatings were attributed to formation of macro-sized pores and disappearance of micro-protrusion during thermal exposure. Optimum water-repellent coating needs to be selected under the consideration of initial contact angle as sell as service temperature.

Preparation of Water-Repellent Coating Solutions from Tetraethoxysilane and Methyltriethoxysilane by Sol-Gel Method (졸-겔법에 의해 Tetraethoxysilane과 Methyltrimethoxysilane으로부터 발수코팅제 제조)

  • Kim, Dong Gu;Lee, Byung Wha;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.56 no.3
    • /
    • pp.327-334
    • /
    • 2018
  • Water-repellent coating solutions were prepared by sol-gel method using tetraethoxysilane (TEOS) and methyltrimethoxysilane (MTMS) as precursors. The solutions were spin-coated on a cold-rolled steel sheet and thermally cured to prepare a non-fluorine water-repellent coating films. The effects of molar ratios of MTMS/TEOS, water concentration and ammonia concentration on the hydrophobic properties of the coating films were studied. The contact angle of water on coating films prepared by varying the molar ratio of MTMS/TEOS to 1~20 showed a maximum value of $108^{\circ}$ when the MTMS/TEOS molar ratio was 10. With increasing water content, the coating films showed the larger contact angles and the better the water repellency. As the amount of ammonia added was increased, the contact angles of coating films were increased, showing the better the water repellency. It is considered that the larger the amount of ammonia added, the larger the size of the silica particles generated, which increases the surface roughness of the silica particles, thereby increasing the water repellency.

An Experimental Study on the Water Repellent Property of Mortar Applied Water Repellent Agent of Inorganic Polymer Type (무기질 폴리머계 흡수방지재를 도포한 모르터의 발수성능 평가에 관한 실험적 연구)

  • 이일형;엄덕준;오상근
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2004.05a
    • /
    • pp.33-37
    • /
    • 2004
  • Recently, Growing tendency for structure surface to use water repellent agent has increased steadily. But investigation of it's protection and durability property is not sufficient. Therefore, this paper shows the investigation about repellent property and micro structure's change in surface layer of mortar that is applied by water repellent agent. Water repellent property, absorption coefficient, air permeability, porosity and observation of micro construct was investigated according to water repellent agent type. The test results indicated that mortar applied water repellent agent appears tiny absorption coefficient, but air permeability is maintained. The reason is because silane solution is coating at capillary surface of a wall and minute pore structure is changeless.

  • PDF

Preparation of Water-Repellent Coating Films from Tetraethoxysilane and Chlorotrimethylsilane on PMMA Substrates (Tetraethoxysilane과 Chlorotrimethylsilane으로부터 PMMA 기재 위에 발수성 코팅 도막 제조)

  • Park, Jong Ho;Lee, Byung Wha;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.124-132
    • /
    • 2019
  • Water-repellent coating solutions were synthesized by hydrolysis and polycondensation reactions with water using tetraethoxysilane (TEOS) and chlorotrimethylsilane (CTMS) as precursors. The solutions were coated on a PMMA sheet and thermally cured to prepare non-fluorinated water-repellent coating films. Coating films were characterized by water contact angles, UV-Vis transmittance and surface morphology. The contact angle of coating films prepared by varying the molar ratio of CTMS/TEOS to 0.6~1.0 exhibited a maximum value of $107^{\circ}$ when the CTMS/TEOS molar ratio was 0.8. The coating films showed a high transmittance over the visible range up to 90% when the CTMS/TEOS molar ratios were 0.6~0.8. However, when the molar ratios of CTMS/TEOS were 0.9~1.0, the transmittance of coating films was lower than 70% due to an uneven shape of the rough surface.

Changes of Thin Film Coating on Polymer Lenses with Varying Temperature (온도에 의한 고분자 렌즈의 재질별 코팅 박막의 변화)

  • Noh, Hyeran
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Purpose: To observe changes of coatings and lens materials with varying temperature to understand effect of temperature on plastic lens. Methods: In this study, three lenses of different refractive indices (2 of thiourethane oriented lenses, an allyl diglycol carbonate oriented lens) were exposed to high temperature (50, 80, and 100 degree) for 5 hours and changes of individual coating (anti-refractive coating, hard coating, and water repellent coating) were measured. Results: As a result, high-refractive index lenses did not exhibit significant variation of hardness. However, hardness of mid-refractive index lens were decreased when exposed to high temperature and destructions of hard coating layer was inferred. Surface contact angles of lens were decreased with increasing temperature and water repellent coating layer were damaged at higher than 80 degree. Conclusions: Multi including water repellent coatings on all three lenses with different refractive indices were damaged when exposed to at or higher than 80 degree. The degree of changes in mechanical and physical properties were depended on polymer material type.

Frictional Sounds and Its Related Mechanical Properties of Vapor Permeable Water Repellent Fabrics for Active Wear (스포츠웨어용 투습발수직물의 마찰음과 관련 역학적 성질 비교)

  • 조길수;박미란
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2003.05a
    • /
    • pp.8-13
    • /
    • 2003
  • Frictional sound of 13 vapor permeable water repellent fabric by sound generator were recorded and analysed through FFT analysis. The frictional Sounds were quantified by calculating total sound pressure(LPT), the level range ΔL and the frequency difference Δf. Mechanical properties were measured by KES-FB. LPT values of specimens finished wet coating were higher than those of dry coating. Values for bending rigidity, shear stiffness, surface roughness and compressional recovery of polyurethane fabrics increased compared with the cire finished fabrics. Laminated fabrics had high values of frictional coefficient and low values of surface roughness. LPT showed significant correlation with compressional energy, weight and thickness. (ΔL) was highly correlated with compressional linearity, frictional coefficient, compressional recovery, and (Δf) with tensile linearity, compressional energy, thickness, and weight.

  • PDF

Effect of Fabric Structural Parameters and Surface Finishing Characteristics to Water Repellency/Proofing/Vapor Permeability of Breathable Fabrics for Sportswear Clothing (직물 구조인자와 표면 가공특성이 스포츠 의류용 투습직물의 발수/방수/투습특성에 미치는 영향)

  • Kim, Hyun Ah
    • Fashion & Textile Research Journal
    • /
    • v.22 no.1
    • /
    • pp.112-118
    • /
    • 2020
  • This paper examined the water repellency, water proofing and water vapor permeability of twelve types of woven fabrics for sports wear clothing. Their physical properties were compared and discussed with the fabric structural parameters and surface finishing effect. A water repellent property of 100% was obtained in the coated or laminated water repellent finished fabrics; in addition, cotton/nylon breathable composite fabrics treated with a laminated finishing and with low fabric density showed a 90% water repellency. Water proofing fabric above 6,000 mm H2O hydraulic pressure was achieved by coated or laminated finishing; however, high density fabric or medium-level coated fabrics exhibited 100% water repellent and low water proofing characteristics. Superior water vapor permeability characteristics with good water repellency and proofing properties were achieved at the 2.5 layered low density and with 0.7 - 0.9 cover factor nylon fabrics treated with hydrophilic laminated finishing. The regression analysis for examining the effects of fabric structural parameters and surface finishing such as coating and laminating to the water vapor permeability exhibited a high determination coefficient of fabric structural parameters of 63.5%; in addition,, main factors among fabric structural parameters appeared to be cover factor and fabric thickness per weight. Coating and Laminating factors exhibited determination coefficient of water vapor permeability parameters of 36.5%.

Preferential face coating of knitted PET fabrics via UV curing for water- and oil-repellent finish (자외선 경화에 의한 PET 니트직물의 편면 발수발유 가공)

  • Jeong, Yong-Kyun;Jeong, Yongjin;Jang, Jinho
    • Textile Coloration and Finishing
    • /
    • v.17 no.6 s.85
    • /
    • pp.27-35
    • /
    • 2005
  • Conventional pad- dry-cure(thermo-fixation) process usually produces functional performance on both sides of a fabric. UV curing technique was applied to impart water- and oil-repellent finish effective only on the face of a PET knitted fabric. The preferential one-side coating, by virtue of the limited penetration of UV light, was achieved by W curing after padding of a fluorocarbon agent without special coating or printing equipments. The difference in the functional property of face and back sides was examined by measuring water and oil repellency at each side of the treated fabric. The influence of pre/post-irradiation dose and agent concentration on the performance of the finished fabrics were investigated. While increase in both resin concentration and post-irradiation did not have significant effect on the finish, UV pre-irradiation of PET fabrics caused remarkable influence presumably due to appropriate surface modification of PET fabrics required for facile wetting of the resin. The dimensional stability and color change of the UV cured fabrics measured by FAST and reflectance spectrophotometry showed significantly decreased color difference and increased percent extension compared with the samples pre-irradiated without agent application.

Preparation of Non-Fluorinated Water Repellent Coating Films Using Methyltrimethoxysilane and Trimethylethoxysilane (Methyltrimethoxysilane과 Trimethylethoxysilane을 이용한 비불소계 발수 코팅 도막의 제조)

  • Kim, Dong Gu;Lee, Byoung Hwa;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.177-184
    • /
    • 2019
  • Non-fluorinated water repellent coating solutions were obtained using methyltrimethoxysilane (MTMS) and trimethylethoxysilane (TMES) as precursors. The solutions were spin-coated on a cold-rolled steel sheet and cured thermally to prepare water repellent coating films. During this process, the effect of molar ratio of TMES/MTMS was studied for the hydrophobic properties of the coating films. Hydrophobic properties of coating films were characterized using contact angle measurement, surface morphology analysis and infrared spectroscopy. When the molar ratio of TMES/MTMS was varied from 0 to 30, the contact angle of the un-coated cold-rolled steel sheet was $30^{\circ}$, whereas when the molar ratio of TMES/MTMS was 1, the contact angle increased to $104^{\circ}$ and water repellency was significantly improved. In the case of TMES/MTMS molar ratios of 10, 15, 25 and 30, the contact angles of coating films showed $109^{\circ}$, $114^{\circ}$, $117^{\circ}$ and $144^{\circ}$, respectively. At this time, the hydrophobicity of the coating films was improved by the increase of the surface roughness and the content of the methyl component at the coating surface. In particular, when the molar ratio of TMES/MTMS was 30, the overall surface roughness was greatly increased due to the presence of surface particles as well as the water repellency due to methyl groups of TMES, resulting in super hydrophobicity of $144^{\circ}$.