• Title/Summary/Keyword: Water removal

Search Result 4,254, Processing Time 0.031 seconds

Removal of Chlorine from Aqueous Solutions by Mulberry Leaf Powder (수용액상에서 뽕잎의 염소 제거 효과)

  • 김동청;채희정;인만진
    • Journal of Sericultural and Entomological Science
    • /
    • v.42 no.2
    • /
    • pp.78-82
    • /
    • 2000
  • In this study, a comparative removal of chlorine from aqueous solutions of mulberry leaf powder(MLP) and activated carbon(AC) was investigated. The chlorine removal capacities of MLP and AC were shown as a function of contact time, pH and initial chlorine concentration. Optimum contact time and removal pH value of MLP were determined as 2 hr and pH 10, respectively. Chlorine removal increased with increasing initial chlorine concentration up to 1.3g/L. Both Langmuir and Freundlich adsorption models were suitable for describing the short-term removal of chlorine by MLP and AC. According to Freundlich adsorption isotherms, the maximum removal capacity of MLP(0.264 mg Cl$_2$/mg) was nearly two times greater than that of AC(0.56 mg Cl$_2$/mg). These results suggested that MLP might potentially be used as an alternative to traditional water treatment materials for removal of residual chlorine in drinking water or process wastewater.

  • PDF

A Study on the Removal Effect of Bacteria and E. Coli. by Water Treatment Processes using Activated Carbon and Membrane (정수처리공정에 따른 일반세균과 대장균군의 제거에 관한 연구)

  • 조태석;김영규;정문호
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.2
    • /
    • pp.24-27
    • /
    • 1997
  • This study has been designed to check the removal effect of contaminated water by various water treatmemt processes using sediment filter, activated carbon, reverse osmosis membrane, ultra vilolet sterilizer and ultra filtration and then to analyze the change of pH, the concentration of chlorides, bacteria and E. coli. after 24 hours. pH has increased as much as 0.15-0.32 by activated carbon but decreased sharply by reverse osmosis treatment after 24 hours. The removal effect of chloride was low by activated carbon and ultra filter but high in reverse osmosis. The removal effect of bacteria and E. coli was low by activated carbon and membrane filter system using activated carbon. Ultra filtration process was effective for purify agricultural water containg bacteria and E.coli.

  • PDF

The Estimation of the Coagulant on Method of Lime Input in the Water Treatment Plant at High Turbidity (고탁도시 소석회 투입방법에 따른 정수장 응집제의 효율 평가)

  • Bang, Mi Ran;Lim, Bong Su;Bae, Byung Uk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.3
    • /
    • pp.107-117
    • /
    • 1998
  • In order to removal turbidity at high turbidity, this study was carried to evaluate the coagulants(Alum, PACl, PACS) that was suited the characteristics of raw water in water treatment plants and to determinate the optimum method of lime feed. When the optimum coagulant was selected the organic matter removal was also investigated as $UV_{254}$. PACl, lime first feed had the highest turbidity removal efficiency rate as above 99.1% and then $UV_{254}$ removal rate was obtained over than 88.0%. If you had the necessary of the lime feed, among the method of lime feed time interval feed largely was improved than simultaneous feed. Also, lime feed dose had about 1/5 of coagulants dose in case of Alum and PACl, but always PACS should be considerated lime dose.

  • PDF

Degradation of THM precursor using $TiO_2$ photocatalytic oxidation in the water treatment processes (정수처리공정에서 $TiO_2$광촉매를 이용한 THM전구물질 제거에 관한 연구)

  • Cho Deok-Hee;Seo Su-Man
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.2
    • /
    • pp.1-6
    • /
    • 2004
  • In Bok-Jeong water treatment plant, chlorination is the only technique used for disinfection of drinking water. This disinfecting treatment leads to the formation of trihalomethanes (THMs). This study was carried out to investigate the possibility of improving removal efficiency of THM precursor in the conventional water treatment processes by $TiO_2$ photocatalytic oxidation. Removal efficiencies of DOC, $UV_{254}$, THMFP were low in the conventional water treatment processes. With application of $TiO_2$ photocatalyst, DOC, $UV_{254}$, THMFP were reduced more effectively. As the $TiO_2$ photocatalytic reaction time increased, the removal efficiencies of DOC, $UV_{254}$, THMFP were increased. The $TiO_2$ photocatalytic removal efficiencies of DOC, $UV_{254}$, THMFP were increased with increasing $TiO_2$ dosage. However, over 0.6g/l of $TiO_2$ dosage, the efficiency reached a plateau.

Effects of Sediment Removal on Water Quality, Phytoplankton Communities and Benthic Macroinvertebrate (퇴적물 제거가 수질과 식물플랑크톤, 저서성 대형무척추동물에 미치는 영향)

  • Youn, Seok Jea;Kim, Hun Nyun;Kim, Yong Jin;Lee, Eun Jeong;Byeon, Myeong-Seop;Lee, Byoung-cheun;Lee, Jae-Kwan
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.3
    • /
    • pp.301-307
    • /
    • 2018
  • This study investigated the effects of sediment removal on water quality and phytoplankton development by setting up mesocosms at Uiam Lake, South Korea, and analyzing the environmental parameters and phytoplankton communities between June and October 2015. The comparison between testbed without sediment removal (TB-1) and testbed after sediment removal (TB-2) gave similar values for water temperature, pH, dissolved oxygen (DO), and electrical conductivity. Nevertheless, the average electrical conductivities of the two testbeds were $139{\mu}S/cm$ and $135{\mu}S/cm$, which were lower than the value obtained from the external control point (TB-con; $154{\mu}S/cm$). The small difference in total phosphorus (TP) and total nitrogen (TN) concentrations between the two testbeds implied that sediment removal did not greatly reduce nutrients; however, the phytoplankton cell count had decreased by approximately 37 % in TB-2 (average 1,663 cells/mL) compared to TB-1 (average 2,625 cells/mL). Compared to TB-con, the phosphorus and nitrogen concentrations of the two testbeds had decreased by 39 % and 30 %, respectively, whereas the phytoplankton abundance had decreased by up to 73 %, perhaps because of the blocked inflow of nutrients and the stabilized body of water caused by the installation of the mesocosm. The concentration of geosmin was lower in testbeds than in the external point, because installation of the structures had reduced the cyanobacteria biomass.

Removal Property of Taste and Odor Causing Material in Pulsator Clarifier (맥동식 침전지에서 맛·냄새 유발물질 제거 특성)

  • Jeong, Il Yong;Cha, Min Whan
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.104-109
    • /
    • 2011
  • The removal efficiencies of 2-methylisoborneol (MIB) and geosmin were investigated to reveal removal characteristics of typical organic compounds causing disagreeable taste and odor at the conventional water treatment plant installed with pulsator clarifier patented by the French company $Degr{\acute{e}}mont$. The injection rate of Powdered Activated Carbon (PAC) into water was changed step wisely as we conducted jar tests in the laboratory and water treatment in the actual plant. 2-MIB concentration decreased linearly while geosmin did exponentially along with the injection rate of PAC at our jar tests. The removal efficiency of geosmin by PAC injection was considerably higher than that of 2-MIB. In the real pulsator clarifier, 2-MIB concentration started decreasing as the injection rate reached up to 10 mg/L of PAC. On the other hand, the concentration of geosmin in water decreased proportional to the injection rate of PAC. In the sand filtration, removal efficiencies of 2-MIB and geosmin on July were much higher than those on March. It was carefully suggested beforehand and found afterwards that general microorganisms notably existed in the sand filter with no chlorine in filter influent and backwash water and the sand filter biologically activated removed much more odor compounds. It was considered as the reason why the removal efficiency of 2-MIB and geosmin was increased. The microbial activity maybe increased in summer with water temperature rising and low filtration rate possibly increased contact time between odor compounds and general microorganisms.

Phosphate removal efficiency and the removal rate constant by particle sizes of converter slag and conditions of the wastewater (전로슬래그의 입도 크기 및 폐수의 조건 변화에 따른 인산염 제거효율과 제거 속도상수에 관한 연구)

  • Lee, Sang Ho;Hwang, Jeong Jae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.841-849
    • /
    • 2012
  • The effluent quality of phosphorus is strengthened by the national standard to conserve water resources to lessen the eutrophication threat. The soluble phosphate in the wastewater effluent can be removed using the converter slag as solid waste produced through the steel making process. The experiments for removal efficiencies and removal constants were performed for this research with the artificial wastewater following several different conditions, particle size, phosphate concentration and initial pH. The correlation coefficients of Freundlich adsorption isothem were 0.9505 for $PS_A$, 0.9183 for $PS_B$, respectively. The removal efficiency was 87-94 % for $PS_A$ and 90-96 % for $PS_B$ respectively. The pH of the wastewater was elevated to pH 11.8 for the initial pH 8.5, phosphate removal efficiency was the highest as 84 % ~ 98 %. In case of 10 mg/L of the intial phosphate, the removal efficiency was 96 ~ 98 %. The more initial pH increases, the higher the reaction rate constant is.

A study on the evaluation of phosphate removal efficiency using Fe-coated silica sand (철 코팅 규사의 인산이온 제거 효율 평가 연구)

  • Jo, Eunyoung;Kim, Younghee;Park, Changyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.6
    • /
    • pp.521-527
    • /
    • 2017
  • Phosphorus is one of the limiting nutrients for the growth of phytoplankton and algae and is therefore one of leading causes of eutrophication. Most phosphorous in water is present in the form of phosphates. Different technologies have been applied for phosphate removal from wastewater, such as physical, chemical precipitation by using ferric, calcium or aluminum salts, biological, and adsorption. Adsorption is one of efficient method to remove phosphates in wastewater. To find the optimal media for phosphate removal, physical characteristics of media was analysed, and the phosphate removal efficiency of media (silica sand, slag, zeolite, activated carbon) was also investigated in this study. Silica sand showed highest relative density and wear rate, and phosphate removal efficiency. Silica sand removed about 36% of phosphate. To improve the phosphate removal efficiency of silica sand, Fe coating was conducted. Fe coated silica sand showed 3 times higher removal efficiency than non-coated one.

Optimization of TiCl4 Concentration and Initial pH for Phosphorus Removal in Synthetic Wastewater (합성폐수 내 인을 제거하기 위한 TiCl4 농도 및 초기 pH 최적조건 도출)

  • Shin, So-Yeun;Kim, Jong-Ho;Ahn, Johng-Hwa
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.6
    • /
    • pp.619-624
    • /
    • 2015
  • This study experimentally determined the effect of titanium tetrachloride (TiCl4) concentration ([TiCl4]) (0.25-0.55 mM) and initial pH (3-11) on phosphorus (P) removal in synthetic wastewater (2 mg P/L). The P removal efficiency increased when [TiCl4] increased. The P removal efficiency showed a parabolic trend with an inflection point at pH 7. At the molar ratio of TiCl4 and P>6.2, the P removal efficiency was over 90% and the residual P concentration was less than 0.2 mg/L. Within the design boundaries, the complete P removal could be achieved at 7.0≤initial pH≤8.5 and 0.43≤[TiCl4]≤0.55 mM. The final pH was over 5.8 at initial pH≥7.7 and [TiCl4]≥0.35 mM. The results showed that TiCl4 was effective in P removal in water so that it could be an alternative chemical for P removal.

PDMS (Polydimethylsilioxane)-Coated Silica Nanoparticles for Selective Removal of Oil and Organic Compound from Water

  • Cho, Youn Kyoung;Kim, Dae Han;Yoon, Hye Soo;Jeong, Bora;Kim, Young Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.257-257
    • /
    • 2013
  • In order to selectively remove oil and organic compound from water, silica nanoparticles with hydrophobic coating was used. Since silica nanoparticles are generally hydrophilic, removal efficiency of oil and organic compound, such as toluene, in water can be decreased due to competitive adsorption with water. In order to increase the removal efficiency of oil and toluene, hydrophobic polydimethylsiloxane (PDMS) was coated on silica nanoparticles in the form of thin film. Hydrophobic property of the PDMS-coated silica nanoparticles and hydrophilic silica nanoparticles were easily confirmed by putting it in the water, hydrophilic particle sinks but hydrophobic particle floats. PDMS coated silica nanoparticles were dispersed on a slide glass with epoxy glue on and the water contact angle on the surface was determined to be over $150^{\circ}$, which is called superhydrophobic. FT-IR spectroscopy was used to check the functional group on silica nanoparticle surface before and after PDMS coating. Then, PDMS coated silica nanoparticles were used to selectively remove oil and toluene from water, respectively. It was demonstrated that PDMS coated nanoaprticles selectively aggregates with oil and toluene in the water and floats in the form of gel and this gel remained floating over 7 days. Furthermore, column filled with hydrophobic PDMS coated silica nanoparticles and hydrophilic porous silica was prepared and tested for simultaneous removal of water-soluble and organic pollutant from water. PDMS coated silica nanoparticles have strong resistibility for water and has affinity for oil and organic compound removal. Therefore PDMS-coated silica nanoparticles can be applied in separating oil or organic solvents from water.

  • PDF