• 제목/요약/키워드: Water radon concentration

검색결과 39건 처리시간 0.023초

도시 일부지역에서의 실내 라돈농도에 관한 연구 (A Study on Indoor Radon Concentrations in Urban Area)

  • 김순애;백남원
    • 한국환경보건학회지
    • /
    • 제28권2호
    • /
    • pp.89-98
    • /
    • 2002
  • This study was taken in general hospital, hotel, shopping center, underground cafe, school, house, for the purpose of investigating the distribution of indoor radon concentration in urban area, by E-PERM which approved U.S. EPA, between August and November 1999. There are two sampling Places were exceed 148 ㏃/㎥(4 pCi/L; U.S EPA remedial level), difference mean is 24.0㏃/㎥ when compared with underground vs. aboveground indoor radon concentration in the same building and ratio is 1.6, so underground area is higher than aboveground (p<0.05). Influencing factors were examined. They related to the location of sampler(detector) open or near the door is lower radon concentration than inside portion, which explains probably open area has better ventilated air and dilutes indoor radon concentration. Temperature has a negative relationship (p<0.05) with indoor radon concentration and relative humidity has a positive (p<0.05) Simultaneously to investigate water radon concentration, collected piped-water and the results were very low, which is the same in piped-water concentration other countries. In conclusion, underground indoor radon concentration is higher than aboveground. Concentration was related to sampling spot, open portion is lower than inside. Higher the temperature, lower the indoor radon concentrations. On the other hand higher the relative humidity, higher the indoor radon concentrations. Indoor radon concentration is influenced by sampling point, temperature, relative humidity.

라돈방사능농도의 측정을 통한 지진발생 예측에 관한 연구 (A Study of the Prediction of Earthquake Occurrence by Detecting Radon Radioactivity)

  • 김윤신;이철민;이승일
    • 한국환경과학회지
    • /
    • 제12권6호
    • /
    • pp.677-688
    • /
    • 2003
  • The purpose of this study was to predict occurrence of earthquakes in Korea by measuring the concentration of radon radioactivity in the air and in the underground water. Two monitoring systems of radon concentration detection in the air were installed in Seoul, East Coast area, whereas of radon concentration in the underground water in Kyungju area during December, 1999 to June, 2001. The distribution of radon concentration in the air in Seoul is as follows Winter(10.10 $\pm$ 2.81 Bq/㎥), autumn(8.41 $\pm$ 1.35 Bq/㎥), summer(5.83 $\pm$ 0.05 Bq/㎥) and spring (5.34 $\pm$ 0.44 Bq/㎥), whereas the distribution of radon in the air in the East Coast area showed some difference as follows : autumn (14.08 $\pm$ 5.75 Bq/㎥), Summer (12.04 $\pm$ 0.53 Bq/㎥), Winter (12.02 $\pm$ 1.40 Bq/㎥) and spring (8.93 $\pm$ 0.91 Bq/㎥). In the meanwhile, the distribution of radon in the water is as follows : spring (123.59 $\pm$ 16.36count/10min), Winter (93.95 $\pm$ 79.69counter/10min), autumn (68.96 $\pm$ 37.53counter/10min) and spring (34.45 $\pm$ 9.69counter/10min). The daily range of the density of radon concentration in Seoul and East Coast area was between 5.51 Bq/㎥ - 9.44 Bq/㎥, 7.15 Bq/㎥ - 15.27 Bq/㎥, respectively. Correlation of the distributions of radon concentrations in the air and in underground water with earthquake showed considerable variations of radon concentration before the occurrence of the earthquake. The results suggested that radon radioactivity seemed to be helpful for the prediction of the occurrence of earthquake.

5678 서울도시철도 지하역사의 라돈 관리 현황 (Current Status of Radon Management in the 5678 Seoul Metropolitan Rapid Transit Subway)

  • 김준현;윤현식;서강진;우희영;김만화;박종헌
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.1306-1312
    • /
    • 2011
  • Underground Subway station's air pollutants are introduced from the indoor or outdoor. And Radon is a major pollutant in the subway station. Radioactive substances Radon is occuring naturally in granite tunnel wall and underground water. Especially inert gas Radon that causes lung cancer in human is anywhere but 5678 S.M.R.T. tunnels deep and pass through the granite plaque have a lot of Radon. The Radon concentration is determined by the following reasons : radon content of soil and concrete, underground water, ventilation, pressure difference, building structure, temperature, etc. So Radon concentration is hard to predict. And we can't only ventilate owing to era of high oil prices. This study focuses on our efforts for the reduction of Radon concentration. And the purpose is to provide basically datas of specially managed 15 subway station's Radon concentration.

  • PDF

서울시 지하철역사의 라돈농도분포 조사 (Distribution of Radon Concentration at Subway Station in Seoul)

  • 이철민;김윤신;김종철;전형진
    • 한국환경보건학회지
    • /
    • 제30권5호
    • /
    • pp.469-480
    • /
    • 2004
  • The radon concentrations were measured to survey distribution of radon concentrations in Seoul subway stations. The radon concentrations in air and water were measured at seventeen subway stations(Mapo, Chungjongno, Sodaemun, Kwanghwamun, Chongno3ga, Ulchiro4ga, Tangdaemun, Sangildong on Line 5;Nowon, Chunggye, Hagye, Kongnung, Taenung, Mokkol, Chunghwa, Sangbong, Myomok on Line 7) using the $RAdtrak^{TM}$ radon gas detector, Pylon AB-5 continuous passive radon detector and liquid scintillation counting method from January to May 1999. The major results obtained from this study were as follows: The long-term mean concentrations of radon were $61.8\;Bq/m^3$ in office, $78.9\;Bq/m^3$ in platform, $38.2\;Bq/m^3$ in concourse and $20.1\;Bq/m^3$ in outdoor, respectively. These levels were less than the action level ($148\;Bq/m^3$) of the U.S. EPA. The highest level of short-term mean concentrations was $116.55\;Bq/m^3$ at Chongno3ga station on the 5th line subway stations, while the lowest mean concentration was $19.55\;Bq/m^3$ at Mokkol station on the 7th line subway stations. The highest concentration of radon in the road water and storing underground water in the subway stations was $234.7\;KBq/m^3\;and\;155.5\;KBq/m^3$ in Sodaemun subway station, respectively. The results suggest that radon concentration in subway stations seems to be affected by ventilation and radon concentratin in underground water in the subway stations.

인천광역시 지하철 역사 내 지하수 및 수돗물의 라돈 위해성 검토 (Radon Hazard Review of Spilled Groundwater and Tap Water in Incheon Metropolitan City Subway Station)

  • 이유상;이상복;강민석;정동하;김진홍;오윤식;최세린;박정수;김성철
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제44권6호
    • /
    • pp.671-677
    • /
    • 2021
  • Interest in the everyday hazards of radon has recently increased as such, this study attempted to examine the dangers of radon in spilled groundwater by comparing the radon concentrations of the drained groundwater and tap water used in recirculating systems in Incheon Subway restrooms. At five stations of Incheon Subway Line 1 and three stations of Line 2, drained groundwater is recirculated and used in restrooms for toilet flushing. Stations restroom tap water for hand washing that used as a control and the measured values of each were compared. With the cooperation of Incheon Transportation Corporation, samples of spilled groundwater and tap water were collected sealed to prevent contact with the air, and a DURRIDGE RAD7 was used as the experimental equipment. The collected samples were subjected to radial equilibration for approximately 3.5 h, at which the radon concentration reached its maximum, and then calculated as 10 measurements using the RAD7 underwater radon measurement mode. In all eight stations, the radon concentration in tap water was lower than the recommended amount. However, in an average of 7 out of the eight stations, the radon concentration in the effluent groundwater was 100 times higher than that in tap water. Since high radon concentrations in groundwater runoff can be harmful to humans, and there is no accurate standard for radon concentrations in domestic water, it is necessary to continuously monitor radon in water and prepare a guidance of recommended values.

서울지역 지하철역의 라돈농도 분포 특성 (Distribution of $^{222}Rn$ Concentration in Seoul Subway Stations)

  • 전재식;김덕찬
    • 대한환경공학회지
    • /
    • 제28권6호
    • /
    • pp.588-595
    • /
    • 2006
  • 본 연구는 서울지역 지하철역 실내 공기 중 라돈분포를 조사하여 그 발생원을 추적 확인하기 위하여 수행되었다. 1998년부터 2004년까지 232개 역사를 대상으로 알파비적검출기를 사용하여 실내 공기 중 장기라돈을 측정하였으며 지하수중 라돈농도는 알파입자계수법에 의하여 측정하였다. 라돈의 주 발생원을 추적하기 위하여 8개 역사를 선정하여 각 역사의 승강장과 인접터널에 대한 공기 중 라돈농도를 조사하였다. 전체역사에 대한 라돈농도 분석결과 기하평균 및 산술평균은 각각 $1.40{\pm}1.94pCi/L,\;1.65{\pm}1.07$였으며, 승강장과 매표소의 기하평균은 각각 $1.54{\pm}1.96pCi/L,\;1.23{\pm}1.88pCi/L$로 승강장에서의 라돈농도가 매표소의 농도보다 더 높게 나타났다. 지질구조와 지하역사의 라돈분포는 밀접한 상관성을 보였으며 터널내부와 지하수중의 라돈농도는 역사 승강장의 라돈농도에 크게 영향을 미치고 있었다. 또한 역사의 승강장이 위치하고 있는 깊이 정도에 따라 라돈농도의 차이를 보였다(p<0.05).

소규모수도시설 지하수의 라돈저감 특성 (Characteristics of Radon Reduction of Small-scale Water Supply System)

  • 조병욱
    • 지질공학
    • /
    • 제29권1호
    • /
    • pp.37-50
    • /
    • 2019
  • 지하수를 원수로 이용하는 소규모수도시설의 라돈 저감은 주로 저수조에서의 정치와 폭기에 의해 일어난다. 여름철 정치에 의한 32개 소규모수도시설 저수조와 꼭지수의 라돈 저감율은 -69.3~62.7%(평균 25.7%)와 -64.3%~83.1%(평균 30.3%), 가을철 정치에 의한 16개 소규모수도시설 저수조와 꼭지수의 라돈 저감율은 21.3%~78.0%(평균 42.8%)와 17.7%~66.9%(평균 44.8%)로 나타났다. 여름철보다 가을철의 라돈 저감률이 더 높은 것은 가을철의 지하수 사용량이 더 적어서 정치효과가 더 컸기 때문으로 판단된다. 폭기시설이 설치된 12개 저수조의 라돈 저감률은 47.4~94.0%(평균 78.9%)로 나타났는데 이 저감률에는 정치에 의한 라돈 저감률이 합쳐져 있다. 소규모수도시설 지하수의 라돈 저감을 위해서는 정치와 폭기를 이용할 수 있는데 보다 효율적인 활용을 위하여 지하수의 라돈 함량 변동성, 저수조의 크기와 형태, 지하수 사용량 변화, 폭기량, 환기시설 등을 고려한 라돈 저감 연구가 필요하다.

지하수와 지표수에서의 라돈 및 우라늄의 실태 조사 (The Study of Radon Activity and Uranium Concentration of Ground Water and Surface Water)

  • 오영미;이종복;신경진;김학철;이재희;황상철;정상기;이상태
    • 한국물환경학회지
    • /
    • 제23권2호
    • /
    • pp.201-205
    • /
    • 2007
  • This paper reports the amount of $^{222}Rn$ and $^{238}U$ in 18 sites of ground water and 30 sites of surface water. The instrument used to count $^{222}Rn$ activity was the liquid scintillation counter (LSC) which could resolute ${\alpha}$ and ${\beta}$ radiations. And $^{238}U$ was analyzed by the inductively coupled plasma (ICP). Radon and Uranium were not detected in raw and treated water which were sampled in a water treatment plant. However, radon ($^{222}Rn$) was high concentration in ground water from Jeon-la, Gang-won. So was uranium ($^{238}U$) in case of ground water from Gang-won, Choong-chung. Radon ($^{222}Rn$) activities were detected less than 15 pCi/L at 5 sampling points, 15~300 pCi/L at 7 sampling points, 300~4000 pCi/L at 6 sampling points. However, Radon ($^{222}Rn$) activities of all ground water samples were less than 4,000 pCi/L, which was bellow American Alternative Maximum Contamination Level (AMCL). Uranium ($^{238}U$) concentrations were less than $0.1{\mu}g/L$ at 5 sampling points, from $0.1{\mu}g/L$ to $20{\mu}g/L$ at 13 sampling points. Uranium was not detected in about 30% of the whole samples, but the concentration ranged from relatively low to high concentrations depending on the sampling point. The minimum detectable activity (MDA) of radon was 15 pCi/L. and the detection limit of uranium was $0.1{\mu}g/L$.

괴산군 연풍면 일대 지하수 중 라돈 함량 분포와 변동 (Distribution and Change of Radon Concentration of Groundwater in the Area of Yeonpung-myeon, Goesan-gun, Korea)

  • 조병욱;조수영;오종현;이병대
    • 지질공학
    • /
    • 제33권4호
    • /
    • pp.587-598
    • /
    • 2023
  • 지하수의 라돈 함량이 높은 것으로 알려진 연구지역 지하수의 라돈 함량분포와 시기별 함량변화를 파악하기 위하여 10개 지하수공과 1개 하천수를 대상으로 2개월 간격으로 12회에 걸쳐서 라돈 함량 분석과 DTW(Depth to water table)를 측정하였다. 연구지역 중앙에 위치한 지하수의 라돈 함량은 37.0~2,675.2 Bq/L로 높았으나 연구지역 외곽에서는 10.6~37.9 Bq/L로 낮았다. 연구지역 중앙에 위치한 지하수의 라돈 함량이 높은 것은 옥천층군을 관입한 화강반암과 이에 따른 파쇄대가 발달하였기 때문으로 해석된다. 연구지역 외곽에 위치한 지하수의 라돈 함량이 낮은 것은 화강반암 관입부로부터 떨어진 옥천층군에 위치하고 있기 때문으로 해석된다. 연구지역 중앙에 위치한 지하수의 라돈 함량 변화가 크게 일어나는 것은 연구지역 중앙이 저지대일 뿐만 아니라 계절별 지하수위 변화가 크게 일어나며 이로 인해 천부의 저 함량 라돈 지하수가 고 함량 라돈 지하수에 유입되기 때문으로 보인다.

국내 마을상수도 지하수의 라돈 자연저감 (Natural Radon Removal Efficiency of Small-scale Water Supply System)

  • 조병욱;윤욱;추창오
    • 자원환경지질
    • /
    • 제43권1호
    • /
    • pp.33-42
    • /
    • 2010
  • 마을상수도 지하수의 라돈의 자연저감 정도를 파악하기 위하여 6개 지점을 대상으로 지하수공의 제원, 저수조의 크기, 지하수 사용량, 원수로부터 꼭지수까지의 거리를 측정하고 원수와 3개 꼭지수의 라돈함량을 분석하고 비교하였다. 5개 마을상수도 지하수(A-E)에서 2회에 걸친 원수와 꼭지수의 라돈 자연저감은 2006년 11월에는 26.0%, 2006년 12월에는 45.6%로 나타나 계절별 지하수 사용량에 따른 자연저감율에 차이가 있는 것으로 나타났다. 그러나 마을상수도 F에서 2007년 4월 일주일 간격으로 3회 분석된 꼭지수의 라돈함량은 원수의 44.1-49.0%로 나타나 단기간에 걸친 라돈 자연저감에는 큰 변화가 없는 것으로 나타났다. 한편 꼭지수에서의 라돈의 저감은 원수로부터의 거리, 저수조의 크기보다는 지하수의 사용량에 더 영향을 받는 것으로 나타났다.