• 제목/요약/키워드: Water quenching

검색결과 213건 처리시간 0.038초

보론강 판재 핫스탬핑시 직수분사냉각 공정의 적용성 (The Application of Direct Water Quenching Process in Hot Stamping of Boron Steels)

  • 박현태;권의표;임익태
    • 한국재료학회지
    • /
    • 제29권12호
    • /
    • pp.818-824
    • /
    • 2019
  • In this study, the direct water quenching technique is applied to validate the applicability of direct water quenching as a cooling method in the hot stamping process of 3.2 mm thick boron steel sheet. Cooling performance of conventional die quenching and direct water quenching is compared. Higher cooling rate is obtained by hot stamping with direct water quenching compared to die quenching. As the flow rate of cooling water increases, the cooling rate increases, and a high cooling rate of 71 ℃/s is achieved under flow rate conditions of 0.8 L/min. Through direct water quenching, the cooling time required for sufficient cooling of the sheet is reduced. Full martensitic microstructure is obtained under flow rate condition of 0.8 L/min. Hardness increases with increasing flow rate. From these results, it is verified that the direct water quenching is applicable to the hot stamping of thick boron steel sheet.

냉각수의 유동속도와 온도가 담금효과에 미치는 영향 (The influence of flow rate and temperature on the quenching effect of cooling water)

  • 민수홍;김상열
    • 오토저널
    • /
    • 제4권3호
    • /
    • pp.24-39
    • /
    • 1982
  • It has already been known that quenching effect is influenced greatly by stirring and changing coolant's temperature on quenching. But according to the past investigations its effect has not been taken into consideration quantitatively in the cooling process. The purpose of this study is that the influence of flow rate and temperature on the quenching effect of cooling water as quenching medium is quantitatively examined by using the open channel. The stream of water in this study is turbulent flow. The temperature of the specimen made of pure copper is measured by CA thermocouple in the vicinity of the surface and recorded by an automatic recorder during the quenching process in city water. The results obtained are as follows; 1. The quenching effect of cooling water generally increases with Reynolds Number(characteristic length; specimen diameter)as shown in the experimental formula; but at the realm of Reynolds Number from 1.2 * 10$^{4}$ to 9.2 * 10$^{4}$, the increasing rate of quenching effect shows little increase. 2. The increasing rate of quenching effect was increased under the flow rate of 221 cm/sec. On the other hand, it was decreased below this flow rate. 3. The quenching effect was influenced by the water temperature and the flow rate. But it was rather dependent upon the former than the latter. 4. Although the quenching effect appeared loosely in the water temperature of 50.deg. C, it was shown that the quenching effect increased in the low flow rate of 31 cm/sec. comparing with the still water. 5. It is desirable to design the quenching system to be over 1.2 * 10$^{4}$ in Reynolds Number or over, 3000$cm^{-1}$ / in V/v in order to increase the quenching effect of the system using open channel.annel.

  • PDF

Quenching of Water Soluble Conjugated Polymer by Electrostatic Interaction

  • Jin, Youngeup
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권11호
    • /
    • pp.3593-3596
    • /
    • 2012
  • The water-soluble conjugated polymer with fluorescence quenching as a result of electrostatic interaction and aggregation was synthesized through Suzuki polymerization. The absorption and emission of anionic polymer (a-PFP) is blue shifted as compared with cationic polymer (c-PFP) although getting same backbone, and the absolute PL quantum efficiency of a-PFP in water is over 90% due to good solubility in aqueous solution. We anticipate that the fluorescence quenching of anionic and cationic polymers, with same conjugated backbone, could be shown in aqueous solution.

3.2t 보론강 판재 직수냉각 핫스탬핑시 냉각수 유량에 따른 미세조직 및 기계적 특성 (Microstructure and Mechanical Properties of Hot-Stamped 3.2t Boron Steels according to Water Flow Rate in Direct Water Quenching Process)

  • 박현태;권의표;임익태
    • 한국재료학회지
    • /
    • 제30권12호
    • /
    • pp.693-700
    • /
    • 2020
  • Direct water quenching technique can be used in hot stamping process to obtain higher cooling rate compared to that of the normal die cooling method. In the direct water quenching process, setting proper water flow rate in consideration of material thickness and the size of the area directly cooled in the component is important to ensure uniform microstructure and mechanical properties. In this study, to derive proper water flow rate conditions that can achieve uniform microstructure and mechanical properties, microstructure and hardness distribution in various water flow rate conditions are measured for 3.2 mm thick boron steel sheet. Hardness distribution is uniform under the flow condition of 1.5 L/min or higher. However, due to the lower cooling rate in that area, the lower flow conditions result in a drastic decrease in hardness in some areas in the hot-stamped part, resulting in low martensite fraction. From these results, it is found that the selection of proper water flow rate is an important factor in hot stamping with direct water quenching process to ensure uniform mechanical properties.

급랭 열처리시 지르코늄 합금의 취성 거동 (Embrittlement Behavior of Zirconium Alloy in Quenching Heat Treatment)

  • 김준환;이종혁;최병권;정용환
    • 열처리공학회지
    • /
    • 제17권4호
    • /
    • pp.216-222
    • /
    • 2004
  • Study was focused on the quenching embrittlement property of Zircaloy-4 cladding simulated Loss Of Coolant Accident (LOCA) environment in terms of high temperature oxidation and phase transformation. Property in LOCA condition of advanced cladding that contained Nb element was also investigated. Claddings were oxidized at given temperature and given time followed by water quenching. The results showed that ${\beta}$ phase which formed at quenching stage has an influence on cladding property. In case of advanced cladding, Nb retards cladding oxidation, thus enhances quenching resistance.

탄소강의 담금질 열전달에 관한 연구 (A Study on the Heat Transfer of Carbon Steels in Quenching)

  • 김경근;윤석훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제19권2호
    • /
    • pp.20-26
    • /
    • 1995
  • The very rapid cooling problem from $820^{\circ}$C to $20^{\circ}$C on the surface of the steel by thermal conduction including the latent heat of phase transformation of steel and by transient boiling heat transfer of water are considered to principal problem in quenching. The transient boiling process of water at the surface of specimen during the quenching process were experimentally analyzed. Then the heat flux was numerically calculated by the numerical method of inverse heat condition problem. In this report, the simulation program to calculate the cooling curves for large rolls was made using the subcooled transient boiling curve as a boundary condition. By this simulation program, the cooling curves of rolls from D=50mm to D=200mm were calculated and the effects of agitation of circulation of water also investigated.

  • PDF

Characteristic of Quenching Refrigerant for Heat Treatment Deformation Control of SM45C Steel

  • Lyu, Sung-Ki
    • Journal of Mechanical Science and Technology
    • /
    • 제16권5호
    • /
    • pp.647-654
    • /
    • 2002
  • This study deals with the characteristic of quenching refrigerant for heat treatment deformation control of SM45C steel. Heat-treatment deformation must be controlled for the progress of production parts for landing gear. Most of deformation is occurred on inconsistent cooling. The inconsistent cooling is caused by a property of quenching refrigerant. When a heated metal is deposited in the quenching refrigerant, the cooling speed is so slow in early period of cooling because of a steam-curtain. After additional cooling, the steam-curtain is destroyed. In this progress, the cooling speed is very fast. The object of this study is to control the deformation of heat-treatment for landing gear by improving the conditions of quenching. The cooling curves and cooling rates of water, oil and polymer solution are obtained and illustrated. From the characteristics of the quenching refrigerant, the effects of heat-treatments on thermal deformation and fatigue strength are also investigated.

Physicochemical Properties of Protoporphyrin IX by Metal Ions in Acetonitrile-Water Mixture Solution

  • Bark, Ki-Min;Yang, Jeong-Im;Lee, Ho-Suk;Lee, Jee-Bum;Park, Chul-Ho;Park, Hyoung-Ryun
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권6호
    • /
    • pp.1633-1637
    • /
    • 2010
  • The UV-vis absorption spectrum of protoporphyrin IX shows a very sharp and strong absorption maximum peak at 398 nm in acetonitrile-water mixture solution (1:1 v/v). When divalent metal ions such as $Cu^{2+}$, $Zn^{2+}$, and $Ca^{2+}$ ion were added to protoporphyrin IX, metal protoporphyrin IX complexes were thereby produced. Cu-protoporphyrin IX complexes have the largest formation constant ($K_f$) among them. The fluorescence intensity of protoporphyrin IX was diminished by the presence of $Cu^{2+}$, $Zn^{2+}$, $Ca^{2+}$, $Mn^{2+}$, and $Ni^{2+}$ ions as quenchers. However, $Mg^{2+}$, $Mn^{2+}$, and $Ni^{2+}$ ions are hardly combined with protoporphyrin IX. $Mg^{2+}$ ion does not take part in the fluorescence quenching process of protoporphyrin IX in acetonitrile-water mixture solution. According to the Stern-Volmer plots, fluorescence quenching by $Cu^{2+}$, $Zn^{2+}$, and $Ca^{2+}$ ions involves static quenching, which is due to complex formation. On the contrary, dynamic quenching has a large influence on the overall quenching process, when $Mn^{2+}$ and $Ni^{2+}$ ions were added to protoporphyrin IX in acetonitrile-water mixture solution.

보론강 카메라 케이스 고온성형 공정 비교 (Comparison of the Quenching Method in Hot Press Forming of Boron Steel)

  • 서오석;김헌영;홍석무;유수열;윤석진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.185-189
    • /
    • 2009
  • Recently, ultra high strength products can be manufactured by the hot press forming process of Boron steel in automotive and electronics industries. In order to get high strength, the hot press forming should be accompanied by quenching process inducing phase transformation. There are several types of the hot press forming processes according to the quenching method, water quenching and die quenching, etc. In the study, the process was numerically and physically simulated to compare the two types of quenching processes, and then the strength, hardness and dimensions of the products were compared with try-outs.