• Title/Summary/Keyword: Water quality prediction

Search Result 419, Processing Time 0.025 seconds

Prediction of the DO concentration using the machine learning algorithm: case study in Oncheoncheon, Republic of Korea

  • Lim, Heesung;An, Hyunuk;Choi, Eunhyuk;Kim, Yeonsu
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.1029-1037
    • /
    • 2020
  • The machine learning algorithm has been widely used in water-related fields such as water resources, water management, hydrology, atmospheric science, water quality, water level prediction, weather forecasting, water discharge prediction, water quality forecasting, etc. However, water quality prediction studies based on the machine learning algorithm are limited compared to other water-related applications because of the limited water quality data. Most of the previous water quality prediction studies have predicted monthly water quality, which is useful information but not enough from a practical aspect. In this study, we predicted the dissolved oxygen (DO) using recurrent neural network with long short-term memory model recurrent neural network long-short term memory (RNN-LSTM) algorithms with hourly- and daily-datasets. Bugok Bridge in Oncheoncheon, located in Busan, where the data was collected in real time, was selected as the target for the DO prediction. The 10-month (temperature, wind speed, and relative humidity) data were used as time prediction inputs, and the 5-year (temperature, wind speed, relative humidity, and rainfall) data were used as the daily forecast inputs. Missing data were filled by linear interpolation. The prediction model was coded based on TensorFlow, an open-source library developed by Google. The performance of the RNN-LSTM algorithm for the hourly- or daily-based water quality prediction was tested and analyzed. Research results showed that the hourly data for the water quality is useful for machine learning, and the RNN-LSTM algorithm has potential to be used for hourly- or daily-based water quality forecasting.

Application and evaluation for effluent water quality prediction using artificial intelligence model (방류수질 예측을 위한 AI 모델 적용 및 평가)

  • Mincheol Kim;Youngho Park;Kwangtae You;Jongrack Kim
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.38 no.1
    • /
    • pp.1-15
    • /
    • 2024
  • Occurrence of process environment changes, such as influent load variances and process condition changes, can reduce treatment efficiency, increasing effluent water quality. In order to prevent exceeding effluent standards, it is necessary to manage effluent water quality based on process operation data including influent and process condition before exceeding occur. Accordingly, the development of the effluent water quality prediction system and the application of technology to wastewater treatment processes are getting attention. Therefore, in this study, through the multi-channel measuring instruments in the bio-reactor and smart multi-item water quality sensors (location in bio-reactor influent/effluent) were installed in The Seonam water recycling center #2 treatment plant series 3, it was collected water quality data centering around COD, T-N. Using the collected data, the artificial intelligence-based effluent quality prediction model was developed, and relative errors were compared with effluent TMS measurement data. Through relative error comparison, the applicability of the artificial intelligence-based effluent water quality prediction model in wastewater treatment process was reviewed.

Prediction of pollution loads in the Geum River upstream using the recurrent neural network algorithm

  • Lim, Heesung;An, Hyunuk;Kim, Haedo;Lee, Jeaju
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.1
    • /
    • pp.67-78
    • /
    • 2019
  • The purpose of this study was to predict the water quality using the RNN (recurrent neutral network) and LSTM (long short-term memory). These are advanced forms of machine learning algorithms that are better suited for time series learning compared to artificial neural networks; however, they have not been investigated before for water quality prediction. Three water quality indexes, the BOD (biochemical oxygen demand), COD (chemical oxygen demand), and SS (suspended solids) are predicted by the RNN and LSTM. TensorFlow, an open source library developed by Google, was used to implement the machine learning algorithm. The Okcheon observation point in the Geum River basin in the Republic of Korea was selected as the target point for the prediction of the water quality. Ten years of daily observed meteorological (daily temperature and daily wind speed) and hydrological (water level and flow discharge) data were used as the inputs, and irregularly observed water quality (BOD, COD, and SS) data were used as the learning materials. The irregularly observed water quality data were converted into daily data with the linear interpolation method. The water quality after one day was predicted by the machine learning algorithm, and it was found that a water quality prediction is possible with high accuracy compared to existing physical modeling results in the prediction of the BOD, COD, and SS, which are very non-linear. The sequence length and iteration were changed to compare the performances of the algorithms.

Water Quality Prediction of Chungju Reguration Reservoir by WASP Model (WASP 모형에 의한 충주댐 조정지호의 수질예측)

  • Chang, In-Soo;Park, Ki-Bum;Lee, Won-Ho;Kim, Ji-Hak
    • Journal of Environmental Science International
    • /
    • v.18 no.6
    • /
    • pp.683-690
    • /
    • 2009
  • The water quality of reservoir can be controled by water quality prediction model because it can not only grasping the present water state but also predicting the water quality in future. In this study, WASP model is used to predict the water quality of Chungju reguration reservoir. This model has some special option which predicts the pollutant outflow phenomenon caused by the contamination sources. So this model is widely used because that can present the scientific basis in this field. This model can help the managers make the right choice of water quality policy. Environmental grade of Chungju reguration reservoir is in III,IV grade which is in bad condition comparatively. The water contamination will be in poor as the year passes. When considering T-N, T-P which are the nutrient to control eutrophication, the concentrated administration about contamination sources is in urgent.

A Study on Spatial Prediction of Water Quality Constituents Using Spatial Model (공간모형을 이용한 수질오염물질의 공간적 예측 및 평가에 대한 연구)

  • Kang, Taegu;Lee, Hyuk;Kang, Ilseok;Heo, Tae-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.4
    • /
    • pp.409-417
    • /
    • 2014
  • Spatial prediction methods have been useful to determine the variability of water quality in space and time due to difficulties in collecting spatial data across extensive spaces such as watershed. This study compares two kriging methods in predicting BOD concentration on the unmonitored sites in the Geum River Watershed and to assess its predictive performance by leave-one-out cross validation. This study has shown that cokriging method can make better predictions of BOD concentration than ordinary kriging method across the Geum River Watershed. Challenges for the application of cokriging on the spatial prediction of surface water quality involve the comparison of network-distance-based relationship and euclidean-distance-based relationship for the improvement in the predictive performance.

Development of A Water Quality Management Information System in Reservoirs Using a Web based Water Quality Prediction Model and an Expert System (웹기반 수질예측모델과 전문가시스템을 이용한 저수지 수질관리 정보시스템 개발)

  • Lee, Ju-Seung;Goh, Hong-Seok;Goh, Nam-Yuoung
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.527-533
    • /
    • 2005
  • Recently reservoir is polluted by concentrative development of urbanization. Accordingly, the prediction of water quality has import meaning for protecting of water quality pollution. This study was carried out to predict water quality of Gyung Cheon reservoir by WASP5. We have established an integrated system on the basis of web, which predicts the future quality of water through water quality model, WASP5 based on information of water environment in a reservoir for agriculture, uniting expert system which supports the determination to set up measures for improving the quality of water to cope with the result.

  • PDF

Prediction of Water Quality in Haenam Estuary Reservoir Using Multiple Box Model (I) -Development and Application of Water Quality Subroutines- (Multiple Box 수질모형에 의한 해남호 수질예측 (I) - 수질부 모형의 개발과 적용 -)

  • 신승수;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.3
    • /
    • pp.116-129
    • /
    • 1990
  • A rational management of water resources in estuary reservoirs necessiates the prediction of water quality. In this study, a multiple box model for the water quality prediction was developed as a tool for the purpose of examining an adequate way to improve and maintain the water quality. Some submodels that are suitable for simulating the mixing behavior of pollutant materials in a lake were considered in this model. The model was appiled for predicting water qualities of Haenam Esturay Reservoir. The result from this study can be summarized as follows : 1.A water quality simulation model that can predict the 10-day mean value of water qualities was developed by adding some submodels that simulate the concentrations of chlorophyll-a, BOD, T-P and T-N to the existing Multiple Box Model representing the mixing and circulating of materials by the hydarulic action. 2.As input data for the model developed, the climatic data including precipitation, solar radiation, temperature, cloudness, wind speed and relative humidity, and the water buget records including the pumping discharge and the releasing discharge by drainage gate were ollected. The hydrologic data for the inflow discharge from the watershed was obtained by simulation with the aid of USDAUL-74/SNUA watershed model. Also the water quality data were measured at streams and the reservoir. 3.As a result of calibration and verification test by using four comonents of water quality such as Chlorophyll-a, BOD, T-P and T-N, it was found that the correlation coefficeints between the observed and the simulated water qualities showed greater than 0.6, therefore the capability of the model to simulate the water quality was proved. 4.The result based on the model application showed that the water quality of the Haenam Estuary Reservoir varies seasonally with the harmonic trend, however the water quality is good in winter and get worse in summer. Also it may be concluded that the current grarde of water quality in the Heanam Esutary Reservoir is ranked as grade 4 suitable only for the agricultutal use.

  • PDF

The Effect of Input Variables Clustering on the Characteristics of Ensemble Machine Learning Model for Water Quality Prediction (입력자료 군집화에 따른 앙상블 머신러닝 모형의 수질예측 특성 연구)

  • Park, Jungsu
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.5
    • /
    • pp.335-343
    • /
    • 2021
  • Water quality prediction is essential for the proper management of water supply systems. Increased suspended sediment concentration (SSC) has various effects on water supply systems such as increased treatment cost and consequently, there have been various efforts to develop a model for predicting SSC. However, SSC is affected by both the natural and anthropogenic environment, making it challenging to predict SSC. Recently, advanced machine learning models have increasingly been used for water quality prediction. This study developed an ensemble machine learning model to predict SSC using the XGBoost (XGB) algorithm. The observed discharge (Q) and SSC in two fields monitoring stations were used to develop the model. The input variables were clustered in two groups with low and high ranges of Q using the k-means clustering algorithm. Then each group of data was separately used to optimize XGB (Model 1). The model performance was compared with that of the XGB model using the entire data (Model 2). The models were evaluated by mean squared error-ob servation standard deviation ratio (RSR) and root mean squared error. The RSR were 0.51 and 0.57 in the two monitoring stations for Model 2, respectively, while the model performance improved to RSR 0.46 and 0.55, respectively, for Model 1.

Water Quality Forecasting of the River Applying Ensemble Streamflow Prediction (앙상블 유출 예측기법을 적용한 하천 수질 예측)

  • Ahn, Jung Min;Ryoo, Kyong Sik;Lyu, Siwan;Lee, Sang Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.359-366
    • /
    • 2012
  • Accurate predictions about the water quality of a river have great importance in identifying in-stream flow and water supply requirements and solving relevant environmental problems. In this study, the effect of water release from upstream dam on the downstream water quality has been investigated by applying a hydological model combined with QUAL2E to Geum River basin. The ESP (Ensemble Stream Prediction) method, which has been validated and verified by lots of researchers, was used to predict reservoir and tributary inflow. The input parameters for a combined model to predict both hydrological characteristics and water quality were identified and optimized. In order to verify the model performance, the simulated result at Gongju station, located at the downstream from Daecheong Dam, has been compared with measured data in 2008. As a result, it was found that the proposed model simulates well the values of BOD, T-N, and T-P with an acceptable reliability.

Operational Hydrological Forecast for the Nakdong River Basin Using HSPF Watershed Model (HSPF 유역모델을 이용한 낙동강유역 실시간 수문 유출 예측)

  • Shin, Changmin;Na, Eunye;Lee, Eunjeong;Kim, Dukgil;Min, Joong-Hyuk
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.2
    • /
    • pp.212-222
    • /
    • 2013
  • A watershed model was constructed using Hydrological Simulation Program Fortran to quantitatively predict the stream flows at major tributaries of Nakdong River basin, Korea. The entire basin was divided into 32 segments to effectively account for spatial variations in meteorological data and land segment parameter values of each tributary. The model was calibrated at ten tributaries including main stream of the river for a three-year period (2008 to 2010). The deviation values (Dv) of runoff volumes for operational stream flow forecasting for a six month period (2012.1.2 to 2012.6.29) at the ten tributaries ranged from -38.1 to 23.6%, which is on average 7.8% higher than those of runoff volumes for model calibration (-12.5 to 8.2%). The increased prediction errors were mainly from the uncertainties of numerical weather prediction modeling; nevertheless the stream flow forecasting results presented in this study were in a good agreement with the measured data.