• 제목/요약/키워드: Water quality patterns

Search Result 272, Processing Time 0.031 seconds

Spatial and Temporal Variability of Water Quality in Geum-River Watershed and Their Influences by Landuse Pattern (금강 수계의 시.공간적 수질특성과 토지이용도의 영향)

  • Han, Jeong-Ho;Bae, Young-Ju;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.3
    • /
    • pp.385-399
    • /
    • 2010
  • The objective of this study was to analyze long term temporal trends of water chemistry and spatial heterogeneity for 83 sampling sites of Geum-River watershed using water quality dataset during 2003~2007 (obtained from the Ministry of Environment, Korea). The water quality, based on multi-parameters of temperature, dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD), suspended solids (SS), total nitrogen (TN), total phosphorus (TP), and electric conductivity (EC), largely varied depending on the landuse patterns, years and seasons. The watershed was classified into three different landuse types: forest stream (Fo), agricultural stream (Ag), and urban stream (Ur). Largest seasonal variabilities in most parameters occurred during the two months of July to August and these were closely associated with large spate of summer monsoon rain. Conductivity, used as a key indicator for an ionic dilution during rainy season, and nutrients of TN and TP had inverse functions of precipitation. BOD, COD decrease during the rainy season. Minimum values in the conductivity, TN, and TP were observed during the summer monsoon, indicating an ionic and nutrient dilution of river water by the rainwater. In contrast, major inputs of suspended solids (SS) occurred during the period of summer monsoon. The landuse patterns analyses, based on the variables of BOD, COD, TN, TP and SS, showed that the values were greater in the agricultural stream (Ag) than in the forest stream (Fo) and urban stream (Ur) and that water quality was worst in the urban stream (Ur). The overall dataset suggest that efficient water quality management, especially in Gap-Stream and Miho-Stream, which showed worst water quality is required along with some of urban stream (Ur), based on the analysis of landuse patterns.

Assessing Future Climate Change Impact on Hydrologic and Water Quality Components in Nakdong River Basin (미래 기후변화에 따른 낙동강 유역의 수문·수질 변화)

  • Jang, Jae Ho;Ahn, Jong Ho
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.11
    • /
    • pp.1121-1130
    • /
    • 2012
  • Projected changes and their impacts on water quality are simulated in response to climate change stressors. CGHR (T63) simulation on the A1B scenario is converted to regional scale data using a statistical down-scaling method and applied to SWAT model to assess water quality impacts in Nakdong River basin. The results demonstrate that rainfall-runoff and pollutant loading in the future (2011~2100) will clearly increase as compared to the last 30-year average. The rate of pollutant loading increase is expected to continue its acceleration until 2040s. Runoff also shows similar patterns to the precipitation, increasing by 60%. Accordingly, the runoff increase results in escalation of pollutant loading by 35~45% for TSS and 5~20% for T-P. This phenomenon is more pronounced in the upper basin during winter and spring season.

Impact Analysis of Tributaries and Simulation of Water Pollution Accident Scenarios in the Water Source Section of Han River Using 3-D Hydrodynamic Model (3차원 수리모델을 이용한 한강 상수원구간 지류영향 분석 및 수질오염사고 시나리오 모의)

  • Kim, Eunjung;Park, Changmin;Na, Mijeong;Park, Hyeon;Kim, Bogsoon
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.4
    • /
    • pp.363-374
    • /
    • 2018
  • The Han River serves as an important water resource for the city of Seoul, Korea and in the neighboring metropolitan areas. From the Paldang dam to the Jamsil submerged weir, the 4 water intake stations that are located for the Seoul metropolitan population were under review in this study. Therefore the water quality management in this section is very important to monitor, analyze and review to rule out any safety concerns. In this study, a 3-D hydrodynamic model, EFDC (Environmental Fluid Dynamics Code), was applied to the downstream of the Paldang Dam in the Han River, which is about 23 km in length, to determine issues related to water resource management. The 3-D grid was composed of 2,168 horizontal grids and three vertical layers. In this case, the hydrodynamic model was calibrated and verified with an observed average daily water surface elevation, water temperature and flow rate data for 3 years (2013~2015). The developed EFDC model proved to reproduce the hydrodynamics of the Han River well. The composition ratios of the noted incoming flows at the monitored intake stations for 3 years and their flow patterns in the river were analyzed using the validated model. It was found that the flow of the Wangsuk Stream depended on the Paldnag dam discharge, and it was noted that the composition ratios of the stream at the intake stations changed accordingly. In a word, the Wangsuk Stream moved mainly along the right bank of the Han River under the condition of a normal dam flow. As can be seen, when the dam discharge rate was low, the incidence of lateral mixing was often seen. The scenario analyses were also conducted to predict the transport of conservative pollutants as in the case of a chemical spill accident. Generally speaking, when scenarios were applied, the arrival time and concentration of pollutants at each intake station was thus predicted.

Prediction of Continuous Discharge and Water Quality Change for Gate Operation in Seonakdong River Experimental Catchment Using SWAT (서낙동강 시험유역에서의 SWAT 모형을 이용한 수문 운영에 따른 연속유출 및 수질변화 예측)

  • Kang, Deok-Ho;Kim, Jung-Min;Kim, Tae-Won;Kim, Young-Do
    • Journal of Wetlands Research
    • /
    • v.14 no.1
    • /
    • pp.21-33
    • /
    • 2012
  • The dominant land use at the Seonakdong river watershed is paddy and forest areas and the Seonakdong river stands still. Thus, the water pollution in the Seonakdong river is becoming more serious for the non-point source. In this study, SWAT(Soil and Water Assessment Tool) model was evaluated for simulation of flow and water quality behaviors in Seonakdong river. To perform the calibration and verification of the SWAT model, the measurements of discharge and water quality were performed for the period from 2006 to 2007 at 5 gauging stations in Seonakdong river. The $R^2$ value for discharge and water quality were 0.86 and 0.70 respectively for calibration after the sensitive analysis. The $R^2$ value for discharge and water quality were 0.81 and 0.51 respectively for verification. The simulation results show that BOD value in the river tends to decrease after the opening of gates and the patterns of TN and TP concentrations are similar as that of BOD. The gate operators need to determine how to supply water in drought season for effective water quality improvement. This study shows that the SWAT model, which is capable of simulating hydrologic and water quality behaviors temporarily and spatially at watershed scale, could be used to get the gate operation rule for the water quality management in Seonakdong river.

Variations in algal distribution and diversity in oceanic island and inland freshwater reservoirs : a step toward for securing diverse freshwater resources (섬 및 내륙 담수지 내 조류 분포 및 다양성 변화 조사 : 다양한 담수원 확보를 위한 첫걸음)

  • Jong Myong Park;Yoo-Kyeong Kim;A Hyun Lee;Hee-Jeong Lee;Yeon-Ja Koh;Nam-Soo Jun;Wan-Soon Kwack
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.63-86
    • /
    • 2024
  • This study analyzed the distribution, diversity, and density variation of algal clusters in a freshwater reservoir from an oceanic island and a traditional inland water system to gain insights on future marine freshwater resource management. In the Paldang water system (Han River), despite the upstream Paldang Dam and the downstream Jamsil underwater reservoir being in the same meteorological zone, their algae density patterns varied inversely. The distinct algal cluster structure (diversity/dominance) of Paldang was altered in the downstream reservoir, suggesting that physical devices aid algae management in traditional water systems. In contrast, 24 out of 35 genera (63.2%) identified in the Jeolgol Reservoir (Baeknyeong Island) were unique, lacking regulatory mechanisms, and existing in a complex ecotone. The desmid Chlorophyceae Cosmarium, adapted to higher photosynthetic stress and low temperatures, dominated in January (38.04%) and August (86.45%) during the periods of extreme photosynthetic stress. Jeolgol's annual algal cluster structure (H' 2.097; D 0.259; S' 35) demonstrated higher stability than Paldang (H' 1.125; D 0.448; S' 13) and the Jamsil underwater reservoir (H' 1.078; D 0.469; S' 12), maintaining an H' above 1.5 even during midwinters. No evidence of TN/TP inflow from surrounding soils was observed, even during torrential rainfalls, with phosphorus being the limiting factor for algal growth. TOC, BOD, chlorophyll-a, and turbidity peaked during Cosmarium bloom. Future climate change is expected to cause fluctuations in algal clusters and related water quality factors. The complex transitional nature of the Jeolgol Reservoir, its algal diversity, and the interspecies interactions contribute to the high stability of its algal community.

Water Ouantity/Quality Analysis and Pollutants Load Estimation in Sillicheon River, Jumunjin, Gangneung (강릉 신리천의 수량 수질 분석 및 오염부하량 추정)

  • Cho Hong Yeon;Kim Chang Il;Lee Dal Soo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.4
    • /
    • pp.196-205
    • /
    • 2004
  • Water qualities (WQ) were measured biweekly from April 2nd to October 29th, 2003 in Sillicheon flowing into the entrance of Jumunjin Harbour and daily water quantities (river discharges) were estimated by the TANK model which has been widely used to compute the runoff discharges in the ungauged watersheds. The spatial and temporal change patterns of the measured WQs were analysed in detail and the correlation between rainfall - WQ and river discharge - WQ were also analysed. From this results, it is found that the correlation coefficient between BOD concentration and rainfall is 0.75 and between the SS concentration and 2-days river discharge is 0.36. The correlation between the COD, TN, TP in the station of Silli Lower Bridge and rainfall runoff quantity was analysed as un-correlated items. As a consequence, the estimated BOD and SS pollutants loads are reliable and show good change patterns even though the accuracy of SS pollutants load is slightly low. The estimated COD, TN and TP pollutants loads, however, can be used only as the reference or averaged values. In order to analyse more accurately the temporal change patterns of these items, more-detailed researches considering the artificial effects and landuse patterns are highly required.

Studies on the Quality Control Method of Crude Drug Preparations (I) -Studies on the Quality Control by the TLC Profiles Analysis of ‘Samyo-Tang’- (생약복합제제(生藥複合製劑)의 품질관리(品質管理)에 관(關)한 연구(硏究)(제1보)(第1報) -TLC Scanner에 의(依)한 삼요탕(三拗湯)의 품질관리(品質管理)-)

  • Hong, N.D.;Kim, J.W.;Kim, N.J.;Shon, J.G.
    • Korean Journal of Pharmacognosy
    • /
    • v.12 no.3
    • /
    • pp.119-124
    • /
    • 1981
  • In our country, in order to cure diseases, a large number of crude drug preparations has been available. Nevertheless, the development of crude drug preparations have been inhibited, because the quality control is not completed so far. Therefore, we have eontinued on studing the quality control method by Zig-zag TLC. profile analysis. The water extract of 'Samyo-Tang' and componental crude drug (Glycyrrhizae Radix, Ephedrae Herba, Armenicae Semen) were developed on Silica gel $60F_{254}\;plate\;(E.\;Merck)$ useing elution solvent. The developed plate were examined useing Dual Wavelength Zig-zag Scanner (Shimadzu). According to the results of the experiment, it could be summarized as follow: 1) Original patterns of TLC profiles of 'Samyo-Tang' componental crude drug and mixing two crude drugs of 'Samyo-Tang' were observed. 2) Original patterns TLC profile of each extract after spraying with 2% ninhydrine were observed. 3) In the extract of addition and subtraction of Ephedrae Herba, peak area of Rf 0.48 and Rf 0.60 were varied quantitatively.

  • PDF

Characteristics of Water Droplets in Gasoline Pipe Flow (가솔린 송유관에서의 수액적 거동 특성)

  • Kim, J.H.;Kim, S.G.;Bae, C.;Sheen, D.H.
    • Journal of ILASS-Korea
    • /
    • v.6 no.1
    • /
    • pp.18-24
    • /
    • 2001
  • Liquid fossil fuel contaminated by water can cause trouble in the combustion processes and affect the endurance of a combustion system. Using an optical sensor to monitor the water content instantaneously in a fuel pipeline is an effective means of controlling the fuel quality in a combustion system. In two component liquid flows of oil and water, the flow pattern and characteristics of water droplets are changed with various flow conditions. Additionally, the light scattering of the optical sensor measuring the water content is also dependent on the flow patterns and droplet characteristics. Therefore, it is important to investigate the detailed behavior of water droplets in the pipeline of the fuel transportation system. In this study, the flow patterns and characteristics of water droplets in the turbulent pipe flow of two component liquids of gasoline and water were investigated using optical measurements. The dispersion of water droplets in the gasoline flow was visualized, and the size and velocity distributions of water droplets were simultaneously measured by the phase Doppler technique. The Reynolds number of the gasoline pipe flow varied in the range of $4{\times}10^{4}\;to\;1{\times}10^{3}$, and the water content varied in the range of 50 ppm to 300 ppm. The water droplets were spherical and dispersed homogeneously in all variables of this experiment. The velocity of water droplets was not dependent on the droplet size and the mean velocity of droplets was equal to that of the gasoline flow. The mean diameter of water droplets decreased and the number density increased with the Reynolds number of the gasoline flow.

  • PDF

Simulation of a piezoelectric flextentional deep-water sonar transducer using a coupled FE-BEM (결합형 유한요소-경계요소 기법을 사용한 심해저용 압전형 유연성 쏘나 변환기의 시뮬레이션)

  • Jarng Soon Suck;Lee Je Hyeong;Ahn Heung Gu;Choi Heun Ho
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.218-223
    • /
    • 1999
  • A piezoelectric flextentional deep-water sonar transducer has been simulated using a coupled FE-BEM. The dynamics of the sonar transducer is modelled in three dimensions and is analyzed with extern리 electrical excitation conditions as well as external acoustic pressure loading conditions. Different results are available such as steady-state frequency response for RX and TX, displacement modes, directivity patterns, back-scattering patterns, resonant frequencies, bandwidths, quality factors, transmitting voltage (TV) responses, input receiving sensitivity (RS) responses. White the present barrel-stave typed sonar transducer of the piezoelectric material is being simulated, the external surface of the transducer is modified in order to allow the same water pressure to be applied to the inner and the outer surfaces of the transducer. With this modification for deep-water application, the resonance frequency of the modified flextentional sonar transducer becomes much lower than that of the unmodified flextentional sonar transducer. The results of the present sonar transducer modelling are also compared with those of a commercial package such as ATILA.

  • PDF

Habitat Quality Factors and Diurnal Activity Patterns of Wintering Mallards(Anas platyrhynchos) in Central-West, Korea. (한국 중서부 지방에서의 서식지 환경요인에 따른 월동 청둥오리(Anas platyrhynchos)의 주간행동)

  • 김현태;김광훈;문형태;조삼래
    • The Korean Journal of Ecology
    • /
    • v.20 no.1
    • /
    • pp.9-14
    • /
    • 1997
  • Wintering behavior of mallards Anas platyrhynchos was studied from November 1995 to February 1996 at wintering habitats : Seosan reclaimed site, Oksan reservoir, and Kum river in Korea. The population of wintering mallards in maximum count was about 35, 000 at Sosan, 500 at Oksan and 1, 680 at Kum river, respectively. In Seosan area, mallards spent more time on water surface. In Kum river and Oksan reservoir, however, they spent more time in riversides. During the daylight hours, mallards spent more time in riversides and ground as the time passes by in the area. Behavioral patterns varied with habitat type, by days and months. Resting was a major time expenditure of mallards on water surface and riversides, and feeding occured occasionally on the ground. During the daytime, feeding and resting activities increased as time passed toward dusks However, time spendings for locmotion and comfort were decreased when it is close to the sun sets. Major disturbance factors within the habitats were identified the local traffics of humans, boats, aircrafts and motor vehicles. Among them, human was the most frequently affecting disturbance factor to the wintering mallards.

  • PDF