• Title/Summary/Keyword: Water quality monitoring

Search Result 1,043, Processing Time 0.024 seconds

Evaluation of Cryptosporidiurn Disinfection by Ozone and Ultraviolet Irradiation Using Viability and Infectivity Assays (크립토스포리디움의 활성/감염성 판별법을 이용한 오존 및 자외선 소독능 평가)

  • Park Sang-Jung;Cho Min;Yoon Je-Yong;Jun Yong-Sung;Rim Yeon-Taek;Jin Ing-Nyol;Chung Hyen-Mi
    • Journal of Life Science
    • /
    • v.16 no.3 s.76
    • /
    • pp.534-539
    • /
    • 2006
  • In the ozone disinfection unit process of a piston type batch reactor with continuous ozone analysis using a flow injection analysis (FIA) system, the CT values for 1 log inactivation of Cryptosporidium parvum by viability assays of DAPI/PI and excystation were $1.8{\sim}2.2\;mg/L{\cdot}min$ at $25^{\circ}C$ and $9.1mg/L{\cdot}min$ at $5^{\circ}C$, respectively. At the low temperature, ozone requirement rises $4{\sim}5$ times higher in order to achieve the same level of disinfection at room temperature. In a 40 L scale pilot plant with continuous flow and constant 5 minutes retention time, disinfection effects were evaluated using excystation, DAPI/PI, and cell infection method at the same time. About 0.2 log inactivation of Cryptosporidium by DAPI/PI and excystation assay, and 1.2 log inactivation by cell infectivity assay were estimated, respectively, at the CT value of about $8mg/L{\cdot}min$. The difference between DAPI/PI and excystation assay was not significant in evaluating CT values of Cryptosporidium by ozone in both experiment of the piston and the pilot reactors. However, there was significant difference between viability assay based on the intact cell wall structure and function and infectivity assay based on the developing oocysts to sporozoites and merozoites in the pilot study. The stage of development should be more sensitive to ozone oxidation than cell wall intactness of oocysts. The difference of CT values estimated by viability assay between two studies may partly come from underestimation of the residual ozone concentration due to the manual monitoring in the pilot study, or the difference of the reactor scale (50 mL vs 40 L) and types (batch vs continuous). Adequate If value to disinfect 1 and 2 log scale of Cryptosporidium in UV irradiation process was 25 $mWs/cm^2$ and 50 $mWs/cm^2$, respectively, at $25^{\circ}C$ by DAPI/PI. At $5^{\circ}C$, 40 $mWs/cm^2$ was required for disinfecting 1 log Cryptosporidium, and 80 $mWs/cm^2$ for disinfecting 2 log Cryptosporidium. It was thought that about 60% increase of If value requirement to compensate for the $20^{\circ}C$ decrease in temperature was due to the low voltage low output lamp letting weaker UV rays occur at lower temperatures.

Nitrogen Removal Rate of A Subsurface Flow Treatment Wetland System Constructed on Floodplain During Its Initial Operating Stage (하천고수부지 수질정화 여과습지의 초기운영단계 질소제거)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.4
    • /
    • pp.278-283
    • /
    • 2003
  • This study was carried out to examine the nitrogen removal rate of a subsurface-flow treatment wetland system which was constructed on floodplain of the Kwangju River from May to June 2001. Its dimensions were 29m in length, 9m in width and 0.65m in depth. A bottom layer of 45cm in depth was filled with crushed granite with about $15{\sim}30\;mm$ in diameter and a middle layer of 10cm in depth had pea pebbles with about 10 mm in diameter. An upper layer of 5 cm in depth contained course sand. Reeds (Phragmites australis) were transplanted on the surface of the system. They were dug out of natural wetlands and stems were cut at about 40 cm height from their bottom ends. Water of the Kwangju River flowed into it via a pipe by gravity flow and its effluent was funneled back into the river. The height of reed stems was 44.2 cm in July 2001 and 75.3cm in September 2001. The number of stems was increased from $80\;stems/m^2$ in July 2001 to $136\;stems/m^2$ in September 2001. Volume and water quality of inflow and outflow were analyzed from July 2001 through December 2001. Inflow and outflow averaged 40.0 and $39.2\;m^3/day$, respectively. Hydraulic detention time was about 1.5 days. Average nitrogen uptake by reeds was $69.31\;N\;mg/m^2/day$. Removal rate of $NO_3-N$, $NH_3-N$, T-N averaged 195.58, 53.65, and $628.44\;mg/m^2/day$, respectively. Changes of $NO_3-N$ and $NH_3-N$ abatement rates were closely related to those of wetland temperatures. The lower removal rate of nitrogen species compared with that of subsurface-flow wetlands operating in North America could be attributed to the initial stage of the system and inclusion of two cold months into the six-month monitoring period. Increase of standing density of reeds within a few years will develop both root zones suitable for the nitrification of ammonia and surface layer substrates beneficial to the denitrification of nitrates into nitrogen gases, which may lead to increment in the nitrogen retention rate.

Soil Physical Properties of Arable Land by Land Use Across the Country (토지이용별 전국 농경지 토양물리적 특성)

  • Cho, H.R.;Zhang, Y.S.;Han, K.H.;Cho, H.J.;Ryu, J.H.;Jung, K.Y.;Cho, K.R.;Ro, A.S.;Lim, S.J.;Choi, S.C.;Lee, J.I.;Lee, W.K.;Ahn, B.K.;Kim, B.H.;Kim, C.Y.;Park, J.H.;Hyun, S.H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.344-352
    • /
    • 2012
  • Soil physical properties determine soil quality in aspect of root growth, infiltration, water and nutrient holding capacity. Although the monitoring of soil physical properties is important for sustainable agricultural production, there were few studies. This study was conducted to investigate the condition of soil physical properties of arable land according to land use across the country. The work was investigated on plastic film house soils, upland soils, orchard soils, and paddy soils from 2008 to 2011, including depth of topsoil, bulk density, hardness, soil texture, and organic matter. The average physical properties were following; In plastic film house soils, the depth of topsoil was 16.2 cm. For the topsoils, hardness was 9.0 mm, bulk density was 1.09 Mg $m^{-3}$, and organic matter content was 29.0 g $kg^{-1}$. For the subsoils, hardness was 19.8 mm, bulk density was 1.32 Mg $m^{-3}$, and organic matter content was 29.5 g $kg^{-1}$; In upland soils, depth of topsoil was 13.3 cm. For the topsoils, hardness was 11.3 mm, bulk density was 1.33 Mg $m^{-3}$, and organic matter content was 20.6 g $kg^{-1}$. For the subsoils, hardness was 18.8 mm, bulk density was 1.52 Mg $m^{-3}$, and organic matter content was 13.0 g $kg^{-1}$. Classified by the types of crop, soil physical properties were high value in a group of deep-rooted vegetables and a group of short-rooted vegetables soil, but low value in a group of leafy vegetables soil; In orchard soils, the depth of topsoil was 15.4 cm. For the topsoils, hardness was 16.1 mm, bulk density was 1.25 Mg $m^{-3}$, and organic matter content was 28.5 g $kg^{-1}$. For the subsoils, hardness was 19.8 mm, bulk density was 1.41 Mg $m^{-3}$, and organic matter content was 15.9 g $kg^{-1}$; In paddy soils, the depth of topsoil was 17.5 cm. For the topsoils, hardness was 15.3 mm, bulk density was 1.22 Mg $m^{-3}$, and organic matter content was 23.5 g $kg^{-1}$. For the subsoils, hardness was 20.3 mm, bulk density was 1.47 Mg $m^{-3}$, and organic matter content was 17.5 g $kg^{-1}$. The average of bulk density was plastic film house soils < paddy soils < orchard soils < upland soils in order, according to land use. The bulk density value of topsoils is mainly distributed in 1.0~1.25 Mg $m^{-3}$. The bulk density value of subsoils is mostly distributed in more than 1.50, 1.35~1.50, and 1.0~1.50 Mg $m^{-3}$ for upland and paddy soils, orchard soils, and plastic film house soils, respectively. Classified by soil textural family, there was lower bulk density in clayey soil, and higher bulk density in fine silty and sandy soil. Soil physical properties and distribution of topography were different classified by the types of land use and growing crops. Therefore, we need to consider the types of land use and crop for appropriate soil management.