• Title/Summary/Keyword: Water quality impact

Search Result 794, Processing Time 0.023 seconds

Reformation Methods of Environmental Impact Assessment in Water Resources Development Project by Examining Local Resident Opinions (수자원 개발사업 주민의견 유형분석을 통한 환경영향평가 개선방안)

  • Yang, Kee-Hyoun;Park, Jae-Chung;Ryu, Young-Han;Jeong, Yong-Moon;Song, Sang-Jin;Shin, Jae-Ki
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.3
    • /
    • pp.397-409
    • /
    • 2011
  • This study was carried out for improving the effectiveness of water resources development project through local resident opinions in the environmental impact assessment(EIA). The EIA reports of seven dams were examined. Four dams -Youngju Dam, Seongduck Dam, Buhang Dam and Hantangang Dam- which included many local opinions including 470 opinions of 341 local residents were selected to be analyzed. Local residents submitted their opinions in the six fields which are meteorological phenomena, water quality, land use, fauna and flora, noise and vibration, and residence, and the major opinions of those opinions came from the atmosphere environment field which is 32% of total opinions and social and economic field which is 38% of total opinions, respectively. In submerged area, opinions of the measure for migration and compensation were 91% and in non-submerged area, opinions of the measure for meteorological phenomena was 86%. Those percentages were maximum in each area. Opinions concerned meteorological phenomena were 86% and 53% in Youngju Dam and Seongduck Dam where area is surrounded by existing dam, but there was only 9% and 0% of opinions in Buhang Dam and Hantangang Dam where area is without existing dam nearby. The reformation methods which reflected the resident's opinions were suggested on EIA in dam development projects. First of all, reliability and objectivity of the field of meteorological phenoma should be enhanced by scientific prediction of the phenomenon days. Secondly, techniques reducing uncertainty of various water quality prediction models ought to be developed and effectiveness of the reduction strategies in environmental impact should be quantified. Finally, the draft of EIA report should involve the detailed plans of migration and compensation's procedures, criteria and measures to support.

Evaluation of Water Quality Prediction Models at Intake Station by Data Mining Techniques (데이터마이닝 기법을 적용한 취수원 수질예측모형 평가)

  • Kim, Ju-Hwan;Chae, Soo-Kwon;Kim, Byung-Sik
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.5
    • /
    • pp.705-716
    • /
    • 2011
  • For the efficient discovery of knowledge and information from the observed systems, data mining techniques can be an useful tool for the prediction of water quality at intake station in rivers. Deterioration of water quality can be caused at intake station in dry season due to insufficient flow. This demands additional outflow from dam since some extent of deterioration can be attenuated by dam reservoir operation to control outflow considering predicted water quality. A seasonal occurrence of high ammonia nitrogen ($NH_3$-N) concentrations has hampered chemical treatment processes of a water plant in Geum river. Monthly flow allocation from upstream dam is important for downstream $NH_3$-N control. In this study, prediction models of water quality based on multiple regression (MR), artificial neural network and data mining methods were developed to understand water quality variation and to support dam operations through providing predicted $NH_3$-N concentrations at intake station. The models were calibrated with eight years of monthly data and verified with another two years of independent data. In those models, the $NH_3$-N concentration for next time step is dependent on dam outflow, river water quality such as alkalinity, temperature, and $NH_3$-N of previous time step. The model performances are compared and evaluated by error analysis and statistical characteristics like correlation and determination coefficients between the observed and the predicted water quality. It is expected that these data mining techniques can present more efficient data-driven tools in modelling stage and it is found that those models can be applied well to predict water quality in stream river systems.

Water Quality Assessment for pre and post-Impoundment of 6 Multipurpose Dam Reservoirs in Korea (국내 6개 다목적댐 저수지의 담수 전·후 수질 비교평가)

  • Park, Jae-Chung;Shin, Jae-Ki;Song, Young-Il;Jeong, Yong-Moon;Song, Sang-Jin
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.1
    • /
    • pp.89-96
    • /
    • 2011
  • This study was carried out to assess the variations of water quality caused by the dam construction on the river. Six dams-Yongdam, Miryang, Hoengseong, Boryeong, Jangheung and Buan- constructed recently in Korea were selected for the study. Chemical oxygen demand(COD) was increased in the initial stage of water storage at dams compared to the lotic(river) environment, but after 3 years it was maintained lower and stabilized concentrations. Five dams except for Jangheung Dam were maintained Ia~Ib grade conditions under the water quality criteria of Korea. The concentrations of total nitrogen(T-N) were decreased under the lentic(reservoir) environment compared to the river status. Total phosphorus(T-P) was decreased 13~63% at the reservoir condition. We concluded that increase of COD concentration was due to the debris organic materials of the land, but temporary phenomenon. T-N and T-P concentrations were decreased at the lentic condition compared to the lotic.

The Delineation of Water-Pollutant Buffering Zone for Sustaining Better Drinking Water Quality Using a GIS (GIS를 이용한 상수원 보호를 위한 수변구역 지정에 관한 연구)

  • Kim, Kye-Hyun;Yoon, Ho-Seok;Kwon, Woo-Suk
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.3
    • /
    • pp.239-248
    • /
    • 2000
  • The aggravating water quality from the expansion of industrialization along with increasing population lead to develop more intensive physical measures to secure better drinking water quality. This study was mainly initiated to establish a water-pollutant buffering zone for the upper stream basin of Paldang--the major source area of drinking water for the metropolitan Seoul and suburban areas with a population more than 13 million. Two different criteria were considered in determining the buffering distance from the edge of the streamflow : 1km-width buffer zone for the special protection area which has been strictly controlled by the conventional laws for the protection of drinking water supply, and 500m-width buffer zone for the rest of the area. To delineate the exact boundaries of the water-pollutant buffering zone, GIS database was created integrating topography, hydrography, cadastral, and other related layers. The newly designated water-pollutant buffering zone would contribute to improve the water quality in a long term along with the conservation of the wet land. More study, however, should be made within the water-pollutant buffering zone such as the detailed survey of the pollutants, vegetation, and ecosystem for more effective management of the buffering zone.

  • PDF

Study on the Management of Minimum Low Flow and Water Quality of Hongjechun (홍제천 정비를 위한 하천유지유량 확보 및 수질개선 방안 연구)

  • Hwang, Byung-Gi;Ho, Jong-Kwang;Oh, Kyung-Seok
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.1
    • /
    • pp.37-46
    • /
    • 2005
  • In this study, field surveys were performed for 12 stations in main stream of Hongjechun and 3 stations in 2 tributaries, respectively, in order to find out dried reaches of the stream, and to examine the water quality of the stream, and to suggest methods to improve the stream concerned into eco-stream. In the results of water quality in stream, however distinct difference for seasonal variation of the water quality was not found, the water quality of winter was relatively better than that of other seasons. Annual mean concentration of BOD was 6.5mg/L in the upper reach, 11.8mg/L in the middle reach, 15.3mg/L in the lower reach of main stream, and total mean was 12.5mg/L, while the BOD concentration was 3.6mg/L in the upper reach, and was 9.6mg/L in the low reach of Gukichun, the tributary. Based on flow examination, the level of water depth was so low and the flow can not be traveled downstream in the reach between ST-9 and ST-10 for low water season, whereas it was observed that the flow was traveling except the dry season even the water level was lower than that of adjacent stations.

Prediction of a Flushing Rate in an Embayment System for Construction of an Environmentally Sound Harbor (환경친화적 항만건설을 위한 항내 희석률 예측)

  • Jeong, Mi-Hoon;Park, Seok-Soon
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.3
    • /
    • pp.215-228
    • /
    • 2000
  • This paper presents a novel method to predict a flushing rate in an embayment system, which can be utilized to assess an environmental impact caused by harbor construction. The method was successfully applied to the Ulsan-Onsan coastal area. The flushing rate was computed on the basis of water quality changes predicted by US Army Corps of Engineers' RMA-2/RMA-4 models. After calibration and verification to the measured tidal elevation and current velocity, the model was used to estimate the flushing rate in the proposed harbor. The water quality was simulated for 96 hours and the flushing rate was computed. The results indicated that the proposed harbor would significantly reduce the flushing rate in the Onsan harbor, especially at the small embayment area near the south breakwater. The flushing rate was evaluated for several alternatives, of which the tidal flow channel of 1,000 $m^2$ in the south pier appeared to be the best mitigation measure. This study proposes that the prediction of flushing rate would be a novel method to assess a water quality impact caused by harbor construction.

  • PDF

Distribution of the Organic Contents in Reservoir Sediment (호소 퇴적물의 유기물 분포)

  • Hwang, Jong Yeon;Han, Eui Jung;Yu, Soon Ju;Yoon, Young Sam;Cheon, Se Eug;Kim, Tae Keun
    • Journal of Environmental Impact Assessment
    • /
    • v.8 no.2
    • /
    • pp.95-107
    • /
    • 1999
  • The organic contents of reservoir sediment can offer a good indicator to events in history of lake life. Reservoir sediment have many information of the past and future fingerprint about development direction of life cycle in biological animals. So, in this study we made an effort to know the distribution of organic contents in Daecheong reservoir sediment. Items for this investigations are such as follows: Loss on ignition, COD, Organic carbon, TN, TP, heavy metal contents, Loss on ignitions were determined in 6.44~15.91% and COD were determined in 1.606~6.859%, organic carbon in 1,077~3.743%. Contents of TP and TN were in the range of 0.083~0.757%, and 0.645~0.926%, respectively.

  • PDF

A Developmental Methodology of Environmental Impact Assessment: Application of Health Risk Assessment (환경영향평가에 있어서 건강위해성평가 기법의 활용방안에 관한 연구)

  • Koo, J.K.;Chung, Y.
    • Journal of Environmental Impact Assessment
    • /
    • v.1 no.1
    • /
    • pp.51-59
    • /
    • 1992
  • Environmental Impact Assessment(EIA) is defined as an activity designed to identify and predict the impact on the environment. In the process of an EIA, the quantitative evaluation is generally performed for the air and water quality which have the national environmental quality standards. But the predicted values for the air and water quality are simply compared to the environmental standards. At present, the EIA process of Korea has no consideration for the possible human health risk resulting from the development projects. Environmental Health Impact Assessment(EHIA) is an applied methodology of EIA to estimate the acceptable health risk caused by a specified level of environmental pollutants. Estimating the excessive lifetime risk that is a possibility of dying of a certain disease by environmental contaminants, is useful as an evaluation technique of EHIA. It is recommanded the decision-makers to make efficient use of EHIA not only the development projects but also legislative proposals, policies and programmes in future.

  • PDF

The Impact on Water Quality from Blue-Green Algae Microcystis Natural Phytoplankton by Algal Assay (생물검정에 의한 남조류 Microcystis가 수질에 미치는 영향)

  • Shin, Jae-Ki;Cho, Kyung-Ja
    • Journal of Environmental Science International
    • /
    • v.9 no.3
    • /
    • pp.267-273
    • /
    • 2000
  • In order to understand the impact for decomposition of blue-green algae Microcystis on water quality, the algae were cultivated with collection of natural population during approximately one month, when water-bloom of Microcystis dominated at August 31, 1999 in the lower part of the Okchon Stream. The enrichment of inorganic NㆍP nutrients didn't in algal assay and the effect of Microcystis on water duality was assessed from the variation of nutrients by algal senescence. Microcystis population seemed to play a temporary role of sink for nutrients in the water body. Initial algal density of Microcystis was 2.3×10/sup 6/ cells/㎖. When Microcystis population died out under light condition, algal NㆍP nutrients between 9∼12 days affected to increase of biomass after reuse by other algal growth as soon as release to the ambient water. However, cellular nutrients under dark condition were almost moved into the water during algal cultivation. NH₄, NO₃ and SRP concentration were highly increased with 160, 17 and 79 folds, respectively relative to the early. As a result, the senescence of Microcystis population seemed to be an important biological factor in which cause more eutrophy and increase of explosive algal development by a lot of nutrients transfer to water body. There are significantly observed an effort of reduce for production of inner organic matters such a phytoplankton as well as load pollutants from watershed in side of the water quality management of reservoir.

  • PDF

Water Quality Modelling of Flood Control Dam by HSPF and EFDC (HSPF-EFDC 모델을 연계한 홍수조절댐 수질 변화 예측)

  • Lee, Young-Gi;Hwang, Sang-Chul;Hwang, Hyun-Dong;Na, Jin-Young;Yu, Na-Young;Lee, Han-Jin
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.3
    • /
    • pp.251-266
    • /
    • 2018
  • This study predicted the effect of operation pattern of flood control dam on water quality. Flood control dam temporarily impound floodwaters and then release them under control to the river below the dam preventing the river ecosystem from the extreme flood. The Hydrological Simulation Program Fortran (HSPF) and the Environmental Fluid Dynamics Code (EFDC) were adapted to predict the water quality before and after the dam construction in the proposed reservoir. The non-point pollutant delivery load from the river basin was estimated using the HSPF, and the EFDC was used to predict the water quality using the provided watershed boundary conditions from the HSPF. As a result of water quality simulation, it is predicted that the water quality will be improved due to the decrease of pollution source due to submergence after dam construction and temporary storage during rainfall. There would be no major water quality issues such as the eutrophication in the reservoir since the dam would impound the floodwater for a short time (2~3 days). In the environmental impact assessment stage of a planned dam, there may be some limitations to the exact simulation because the model can not be sufficiently calibrated. However, if the reliability of the model is improved through the acquisition of actual data in the future, it will be possible to examine the influence of the water environment according to various operating conditions in the environmental impact assessment of the new flood control dam.