• Title/Summary/Keyword: Water quality environment

Search Result 3,190, Processing Time 0.03 seconds

Establishment of Water Quality Standards and Water Quality Target in the Geum-River Basin (금강수계의 물환경기준과 목표수질 설정방안)

  • Yi, Sangjin
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.3
    • /
    • pp.438-442
    • /
    • 2013
  • According to Geum-River restoration project, given conditions for management of water environment in the Geum-River were changed. Because of those changes, this study was investigated the establishment of water quality standards and water quality target in the Geum-River basin. For management of water environment in the Geum-River, the sub-basins and watersheds are newly divided and the water quality and ecosystem standards in the sub-basins are reestablished. Considering the consistency of water environment policy and legal system, the legal name of sub-basins and watersheds are unified. TMDL (total maximum daily load) should be implemented in the sub-basin where exceeds the water quality standards and the number of water pollutant among the water quality parameters which exceeds the water quality standards are extremely minimized. The water quality target of water pollutant for implementation of TMDL should be established same or higher concentration of water quality standards.

Future Direction of Water Quality Standards in Korea (우리나라 물환경 기준의 개선방향)

  • Lee, Jae-Kwan;Cho, Soon;Chung, Il-Rok;Hwang, Soon-Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.737-747
    • /
    • 2006
  • Ministry of Environment (MOE) of Korea has been implementing the water quality management policy to focus on the control of organic matters (BOD and COD) for 28 years since 1978 when the water quality standards had been established. However, the government and the public have begun to recognize the necessity of creating the best water environment for people and aquatic life, and also formulating the various measures of water pollution, Consequently, MOE of Korea is establishing the basic plan of water environment management, with the vision of "Clean Water, Eco River 2015." The major targets of water environment management plan are to maintain ecosystem health and to protect water quality from various hazardous substances in water bodies. In order to achieve the major targets, it is essential to amend the water quality standards, which bring about the systematic management of various pollutants and healthy ecosystem. Introduction of the new techniques of water environment assessment is also prerequisite to maintain sustainable water environment. These can be accomplished under the consideration of following suggestions in environmental quality standards. First, several criteria should be complemented in water quality standards; they include the improvement of the current water quality classification system, the strengthening and supplement of relevant parameters considering human health in the standards, the introduction of biotic indices, and management standards on eutrophication. Secondly, it should be considered to introduce the biological water quality standards using biotic indices and the management standards for sediments. Lastly, it needs to introduce or develop an ecological status classification which could be used in the assessment of the water environment as a whole.

Selection Priority of Tributary Catchments for Improving Water Quality using Stream Grouping Method (하천그룹화 방법을 이용한 수질개선 하천유역의 우선순위 선정)

  • Cho, Byungwook;Choi, Jeongho;Yi, Sangjin;Kim, Youngil
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.18-25
    • /
    • 2012
  • For effective watershed management, it is very important to select the tributaries through selection and concentration of targeted tributary catchments for improving water quality within the limited financial conditions. This study introduced the selection and diagnosis procedure of tributary catchments for improving water quality at Chungcheongnam-do based on water quality and flowrate monitoring, stream grouping method. The tributaries with high value of water quality and flowrate were selected for improving water quality according to stream grouping method. The diagnosis of selected tributaries for improving water quality was performed with analysis of the pollution load (generated, discharged, delivered) and point source discharged pollution load density. The plans for improving water quality of tributaries were suggested thorough various diagnosis of tributary catchments. For improving water quality of tributaries in Chungcheongnam-do, the tributary catchments in the Dangjin, Asan, Yesan, Cheonan, Hongseong area should be preferentially considered. The water quality improving plans for those tributary catchments, in accordance with the reduction of sources of pollution by population and livestock, should be established.

Review on Water Quality and Achievement of Water Quality Goal by Various Evaluation Methods in Geum River (다양한 평가기법을 이용한 금강 대권역의 수질 및 목표수질기준 달성도 평가)

  • Lee, Jae-Woon;Jeong, Hye-Sung;Yoon, Jung-Hee;Cheon, Se-Uk
    • Journal of Environmental Impact Assessment
    • /
    • v.17 no.6
    • /
    • pp.373-380
    • /
    • 2008
  • The Ministry of Environment plans to improve quality of water which is achieved over 85% in rivers and 94% in lakes of the whole country as "Good Water" until 2015. Also, the law of evaluation of water quality and water quality goal were made newly. So, the water quality has evaluated by using new law since 2007. This study evaluated whether "Good Water" and" Water Quality Goal" were achieved or not in 22 middle-sized districts and major 10 lakes of Geum river. The achievement rates of rivers decreased and the achievement rates of lakes mostly were the same for 5 years. In 2007, the achievement rates of "Good Water" were 50% in rivers and 50% in lakes. The achievement rate of "Water Quality Goal" were 59.1% in rivers and 20% in lakes. The water quality in 2007 was evaluated worse than last year in case of rivers. The evaluations of Korea-Comprehensive Water Quality Index(K-CWQI) showed that achievement rates of "Water Quality Goal" were 81.8% in rivers and 0% in lakes. The statistical correlation analysis showed that correlations between BOD and COD were meaningful at the downstream, compared to upstream, generally. In case of lakes, correlations between COD and temperature were meaningful. Also, correlations between COD and Chl-a were meaningful. The Trophic State Index ($TSI_{KO}$) showed that the half of lakes are major over eutrophic status in lakes. These analytical methods such as K-CWQI, $TSI_{KO}$, statistical correlation analysis could be additionally helpful for evaluation of water quality and provide basis data for understanding characteristics of watershed in Geum river.

Short-Term Water Quality Prediction of the Paldang Reservoir Using Recurrent Neural Network Models (순환신경망 모델을 활용한 팔당호의 단기 수질 예측)

  • Jiwoo Han;Yong-Chul Cho;Soyoung Lee;Sanghun Kim;Taegu Kang
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.1
    • /
    • pp.46-60
    • /
    • 2023
  • Climate change causes fluctuations in water quality in the aquatic environment, which can cause changes in water circulation patterns and severe adverse effects on aquatic ecosystems in the future. Therefore, research is needed to predict and respond to water quality changes caused by climate change in advance. In this study, we tried to predict the dissolved oxygen (DO), chlorophyll-a, and turbidity of the Paldang reservoir for about two weeks using long short-term memory (LSTM) and gated recurrent units (GRU), which are deep learning algorithms based on recurrent neural networks. The model was built based on real-time water quality data and meteorological data. The observation period was set from July to September in the summer of 2021 (Period 1) and from March to May in the spring of 2022 (Period 2). We tried to select an algorithm with optimal predictive power for each water quality parameter. In addition, to improve the predictive power of the model, an important variable extraction technique using random forest was used to select only the important variables as input variables. In both Periods 1 and 2, the predictive power after extracting important variables was further improved. Except for DO in Period 2, GRU was selected as the best model in all water quality parameters. This methodology can be useful for preventive water quality management by identifying the variability of water quality in advance and predicting water quality in a short period.

Contributions to the Impaired Water Bodies by Hydrologic Conditions for the Management of Total Maximum Daily Loads (수질오염총량관리 목표수질 초과지역에 대한 유황별 초과기여도 분석)

  • Park, Jun Dae;Oh, Seung Young
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.4
    • /
    • pp.574-581
    • /
    • 2012
  • It is important to analyze the status of water quality with relation to the stream flow to attain water quality goal more effectively in the unit watersheds for the management of Total Maximum Daily Loads (TMDLs). This study developed a flow duration-water quality distribution graph to figure out water quality appearances on the flow variation and analyzed contributions of water quality observations to the impaired water bodies quantitatively by hydrologic conditions. Factors relating to water quality variation can be analyzed more precisely and assessed on the base of quantified contributions. It is considered that this approach could be utilized to establish a more effective plan for the water quality improvement including the prioritization of pollution reduction options.

Framework for Deriving Water Quality Criteria of Toxic Substances (수질유해물질에 대한 수질환경기준 설정체계)

  • Chung, Yun-Chul;Ko, Dae-Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.4
    • /
    • pp.305-313
    • /
    • 2005
  • In these days, water environment is getting threatened by a variety of toxic pollutants discharged from industries. However, environmental standards and regulations in Korea may be in straitened circumstances to protect the water environment from it. Therefore, the purpose of this review is to compare the management state of the toxic substances in water environment and to present the framework for deriving water quality criteria in USA and Japan. To conserve the water environment from the toxic pollutants more efficiently, the following considerations could be suggested in standards and regulation in Korea. Firstly, there should be consistency of regulated pollutants in drinking water quality standard, water quality standards and permissible wastewater discharge standards. Secondly, in case of deriving the water quality standards, it is required to consider the conservation of the aquatic ecosystem as well as the protection of human health. Finally, it is indispensable to make risk-based approach in management of toxic pollutants in water environment.

Status and its Improvement of Comprehensive Water Quality Evaluation (물환경 종합평가의 현황과 선진화 방안)

  • Choi, Ji Yong;Lee, Jee Hyun;Lee, Jae Kwan;Kim, Chang Su
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.748-756
    • /
    • 2006
  • Accurate and timely information on status and trends in the environment is necessary to shape sound water quality management policy and to implement water quality improvement programs efficiently. One of the most effective ways to communicate information on water quality trends to policy-makers, scientists, and the general public is with comprehensive water quality indices. The derivation and structure of a water quality index (WQI) for the classification of surface water quality is discussed. The WQI generally developed through the selection, transformation and weighting of determinants with rating curves based on legal standards and quality directives or guidelines. The representative pollutants should be included in the index, and the relationship between the quantity of these pollutants in the water and the resulting quality of the water should be based on scientific results. The WQI be simply and meaningfully formulated that nonscientifically trained users can easily become familiar with the framework of the system and use the output data to evaluate their own pollution problems.

A Study on Spatial and Temporal Patterns of Water Quality in the Middle Area of the Nakdong River, Korea (낙동강 중류 보 구간에서의 시 · 공간적 수질 분포 특성 연구)

  • Na, Eun Hye;Park, Suyoung;Kim, Jongha;Im, Seongsoo;Kim, Kyunghyun
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.6
    • /
    • pp.723-731
    • /
    • 2015
  • We investigated the spatial and temporal patterns of water quality in the Gangjung-Goryoung weir that is located in the middle area of the Nakdong river, Korea. The monitoring results indicated that there are discernible vertical differences in water quality during the pre- and post-monsoon periods (May to September). During this period, it was observed that the weak thermal stratification formed at the maximum level, and pH, Chl-a, and DO concentrations in the surface layer were higher than those in the bottom layer. This vertical difference was especially noticeable for DO concentrations: there were DO depletions at the bottom layer in late June to early August. During the summer monsoon period with heavy rainfall, there was a decline in vertical differences in water quality. From this study, it was suggested that continuous monitoring of vertical profiles could become a useful tool for identifying the spatial and temporal distributions of water quality and for developing the best management policy for water quality in the Nakdong river.

Water Quality Characteristics and Influencing Factors of Park Drinking Fountains (공원 음수대의 수질 특성 및 영향인자 연구)

  • Sang-jo Kwon;Eun-ah Kim;Duk-hee Joh;Hyo-Jin Lee;Seung-gyu Jung;Seung-yeon Cho
    • Journal of Korean Society on Water Environment
    • /
    • v.40 no.5
    • /
    • pp.229-242
    • /
    • 2024
  • This study investigated water quality characteristics and influencing factors of park drinking fountains having directly piped water systems by analyzing stagnation water (first draw) and water after a 10-minute flush (flushed water). First draws exhibited significant variations in residual chlorine, heavy metals, bacteria, and turbidity, which were largely influenced by usage frequency and external environmental contamination. However, water quality stabilized after flushing. A seasonal analysis indicated that the greatest difference in residual chlorine between first draws and flushed water occurred in spring, followed by that in winter when drinking fountains were discontinued, accompanied by increased zinc concentrations in stagnation water. A comparative analysis of water quality variability by faucet type revealed that push-button faucets exhibited greater variabilities in copper, zinc, and nickel levels than screw-down faucets, likely due to corrosive by-products generated from water hammer effects. Additionally, an analysis based on exterior material indicated that metal fountains experienced higher temperature increases and elevated zinc concentrations in first draws than stone fountains. Regarding installation environments, drinking fountains exposed to direct sunlight or partial shade had higher concentrations of copper, zinc, and nickel in first draws than those installed in constant shade. Overall, these findings suggest that frequent use or flushing can help maintain stable water quality with the exception of push-button faucets.