• Title/Summary/Keyword: Water quality analyze

Search Result 579, Processing Time 0.024 seconds

Target candidate fish species selection method based on ecological survey for hazardous chemical substance analysis (유해화학물질 분석을 위한 생태조사 기반의 타깃 후보어종 선정법)

  • Ji Yoon Kim;Sang-Hyeon Jin;Min Jae Cho;Hyeji Choi;Kwang-Guk An
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.2
    • /
    • pp.109-125
    • /
    • 2023
  • This study was conducted to select target fish species as baseline research for accumulation analysis of major hazardous chemicals entering the aquatic ecosystem in Korea and to analyze the impact on fish community. The test bed was selected from a sewage treatment plant, which could directly confirm the impact of the inflow of harmful chemicals, and the Geum River estuary where harmful chemicals introduced into the water system were concentrated. A multivariable metric model was developed to select target candidate fish species for hazardous chemical analysis. Details consisted of seven metrics: (1) commercially useful metric, (2) top-carnivorous species metric, (3) pollution fish indicator metric, (4) tolerance fish metric, (5) common abundant metric, (6) sampling availability (collectability) metric, and (7) widely distributed fish metric. Based on seven metric models for candidate fish species, eight species were selected as target candidates. The co-occurring dominant fish with target candidates was tolerant (50%), indicating that the highest abundance of tolerant species could be used as a water pollution indicator. A multi-metric fish-based model analysis for aquatic ecosystem health evaluation showed that the ecosystem health was diagnosed as "bad conditions". Physicochemical water quality variables also influenced fish feeding and tolerance guild in the testbed. Eight water quality parameters appeared high at the T1 site, indicating a large impact of discharging water from the sewage treatment plant. T2 site showed massive algal bloom, with chlorophyll concentration about 15 times higher compared to the reference site.

Case Study of Investment Adequacy Analysis After Implementing Master Plan on Sewerage Rehabilitation (하수도정비기본계획 시행 후의 투자적정성 분석에 관한 사례 연구)

  • Park, Kyoo-Hong;Kang, Byong-Jun;Lym, Byeong-In;Knag, Man-Ok;Park, Joo-Yang;Kim, Sung-Tae;Park, Wan-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.4
    • /
    • pp.503-510
    • /
    • 2015
  • The objective of this study is to analyze the investment adequacy of the projects implemented according to the master plan on sewerage rehabilitation at Seoul. The planned and actually implemented ratio of invested money on sewage treatment plants (STPs) to sewers were compared in two temporal periods. Though the planned ratio of investment on STPs to sewers was 50:50 (in 2009-2020), the actual implemented ratio in 2009-2013 was 34:66. Until 2020, the greater investment ratio on STPs to sewers should be made considering the necessity of coping with stricter legal compliance on advanced treatment, stormwater treatment and so on. The priority of the planned and partially implemented projects among four STPs and at each STP was evaluated. Considering only the performance indicator of reduced load of BOD, T-N, T-P per the capacity of each STP facility, the performance among four STPs was shown as Jung-Rang>Tan-Cheon>Seo-Nam>Nan-Ji. The reverse order of the performance results in the past may be considered for future investment priority, but the efficiency of operation implemented at each STP, deteriorated status of each STP, investment in the past and so forth should also be considered. As for the priority of projects conducted within each STP, projects related to legal compliance (such as advanced tertiary treatment, stormwater treatment, etc.) have highest priority. Odor-related project and inhabitant-friendly facility related projects (such as building park on STPs, etc.) has lower priority than water quality related projects but interactivity with end-users of sewerage should also be important.

Coliform Pollution Status of Nakdong River and Tributaries (낙동강수계 본류와 유입지천의 대장균군 오염도)

  • Lee, Hae-Jin;Park, Hae-Kyung;Lee, Jae Hak;Park, A Reum;Cheon, Se-Uk
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.3
    • /
    • pp.271-280
    • /
    • 2016
  • The aim of this study was to analyze spatial and temporal patterns of bacterial pollution levels and the relationship between bacterial pollutants and environmental parameters at the main stream and tributaries of Nakdong River. Water quality data including total coliform and fecal coliform were compiled from a total of 50 monitoring sites (30 at the main stream and 20 at the tributaries) along with rainfall and discharge data for three consecutive years from 2012 to 2014. During the study periods, the geometric mean values of total coliforms and fecal coliforms in the main stream were 74 (22~465) CFU/100 mL and 8 (3~42) CFU/100 mL, respectively. The geometric mean values of total coliforms and fecal coliforms in the tributaries were 275 (36~5,145) CFU/100 mL and 6 (1~1,352) CFU/100 mL, respectively. High concentrations of fecal coliforms were observed at Gumi (M 10), Hyeonpung (M 19), Hapcheon (M 23), and Namji (M 25) in the main stream, whereas Gamcheon (T 6), Bakcheon (T 7), Geumho-gang (T 8), and Gyeseongcheon (T 16) were identified as pollution hot spots in the tributaries. Although bacterial pollution levels showed complex behavior across monitoring sites and time, the highest coliform concentrations were routinely observed in the monsoon season between July and September of each year, indicating that the pollution levels were strongly dependent on precipitation in addition to other physiochemical parameters. Statistically significant correlations were found between fecal coliform concentrations and precipitation (r=0.403, p<0.01), followed by SS (r=0.425, p<0.01), nutrient TP (r=0.388, p<0.01), organic matter COD (r=0.322, p<0.01), and PO4-P (r=0.317, p<0.01) in the main stream in the order of correlation coefficient from high to low.

The Development of a GIS-based Sewer-network Analysis System (GIS를 이용한 하수관망해석시스템 개발)

  • Lee, Jung-Hun;Kim, Kye-Hyun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.6 no.2 s.12
    • /
    • pp.69-79
    • /
    • 1998
  • It is one of the most crutial thing to secure efficient infrastructure of social infrastructure Including rna drinking water, sewer, gas, and electricity, etc. in modern society. Among them, the sourer system need to be properly maintained so as to sustain water quality over the large watershed thereby to provide reasonable level of living environment A few municipalities and private firms have so in been using sewer management system for assessing existing sewer network and auxiliary facilities. Such existing system can only provide functions to manage the sewer pipe itself and they can not fully estimate the amount of sewage water over the pipe through 4he network analysis due to the deficiency of the system Such a limited sewer network analysis function can only analyze the whole network under the assumption of uniformity. The results from such a process can not be fully implemented in the field. Therefore, this study emphasized the development of a sewer management system which can provide practical values from network analysts considering areal peculiarities using a zoning map utilizing a GIS. The system can support analyzing scenarios due to the changes of sewer amounts from the changes of population densities and rainfall amounts not to mention of calculating sewer amount for individual sewer pipes. furthermore, the system can support the decision making for better designing sewer facilities from the expansion of metropolitan areas and constructing satellite cities. Eventually, it will contribute to enhance the effectiveness of sewer-related works and services for residents as well as supporting a decision making for minor and major trouble-shootings.

  • PDF

Effects of Microspraying of Water and Coating by White Materials on Fruit Sunburn Occurrence for 'Fuji'/M.9 Apple Tree (미세살수와 흰색 코팅제 도포가 '후지'/M.9 사과나무 과실 일소 발생에 미치는 영향)

  • Song, Yang-Yik;Park, Moo-Yong;Yang, Sang-Jin;Nam, Jong-Chul;Sagong, Dong-Hoon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.2
    • /
    • pp.76-82
    • /
    • 2010
  • This study was carried out to compare and analyze control methods of the sunburn occurrence that affected 'Fuji'/M.9 planting systems in Korea from 2001 to 2003. It is very important to control temperature of the surface of fruits, because sunburn may occur when the temperature of fruit surfaces reaches $40^{\circ}C{\sim}45^{\circ}C$ due to high air temperature and sunlight during growing periods. As control methods of the sunburn occurrence, white coating materials such as $CaCO_3$ or kaolin were applied four times at two-week intervals from late June, and microspraying of water was conducted when air temperature was over $31^{\circ}C$ from late July to mid-August. Both methods were effective for preventing the sunburn occurrence and improving fruit quality by decreasing peel's temperature of fruits and increasing photosynthesis.

Effects of Membrane Size and Organic Matter on Membrane Fouling (천연유기물질의 특성과 막의 종류에 따른 막오염 메카니즘 분석)

  • Jung, Chul-Woo;Son, Hee-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.10
    • /
    • pp.1046-1054
    • /
    • 2006
  • The raw water DOC contained 39.3% of hydrophilics, 42.9% of hydriophobic, and 17.8% of transphilic. The hydrophobic fraction in this raw water was mostly fulvic acid. Fulvic acid comprised of 62% and the rest was humic acid(38%). There was more carboxylic acid functional group(64%) than phenolic group(36%). HPI-N and HPI-C comprised of 17% and 22% in the hydrophilic portion, respectively. The fouling mechanisms on the membrane surface and into its porous structure were analyzed in terms of several kinetic models. In order to analyze the fouling kinetics, the various kinetic models described in this paper were used to fit the experimental results. The kinetic models and kinetic constants obtained for each operation condition. The permeate flux was rapidly declined by simultaneous pore blocking and cake formation. Also, the permeate flux declined with decreasing internal pore size resulted from organic deposition into the membrane pore. The results of the membrane fouling test using UF membrane according to NOM fractions. HPI-N caused more fouling than HPI-C. Humic acid caused more fouling than fulvic acid probably due to higher adsorption capacity. Since humic acid has higher adsorption capacity than fulvic acid, it would be more adsorbed onto the membrane pores.

Physicochemical Properties and Sensory Evaluation of Meat Analog Mixed With Different Liquid Materials as an Animal Fat Substitute (동물성 지방 대체재로 첨가된 액상 재료에 따른 식물성 고기의 이화학적 특성 및 관능검사)

  • Kim, Honggyun;Bae, Junhwan;Wi, Gihyun;Kim, Hyo Tae;Cho, Youngjae;Choi, Mi-Jung
    • Food Engineering Progress
    • /
    • v.23 no.1
    • /
    • pp.62-68
    • /
    • 2019
  • In this study, the physical and sensorial properties of the meat analog were studied for the purpose of improving sensory preference and mimicking animal meat. The meat analog was made with different types of liquid materials such as oil, water, lecithin, polysorbate 80, or the emulsion of these components. At the aspect of density, the sample mixed with oil was higher than the sample mixed with water. Cooking loss value was higher at the sample with water than the sample with oil and this was the result opposite to the liquid holding capacity analysis. Also, texture profile analysis result showed that the samples with medium chain triglycerides (MCT) oil only showed the highest values in all attributes except for adhesiveness. Principal component analysis was carried out to analyze sensorial properties and it showed that the overall acceptance was high when the juiciness and softness increased. This result was highly related with the addition of emulsion. Therefore, emulsion technology can be a good candidate for improving the quality of meat analog and for mimicking the taste of animal meat.

Performance Characteristics of an Ensemble Machine Learning Model for Turbidity Prediction With Improved Data Imbalance (데이터 불균형 개선에 따른 탁도 예측 앙상블 머신러닝 모형의 성능 특성)

  • HyunSeok Yang;Jungsu Park
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.107-115
    • /
    • 2023
  • High turbidity in source water can have adverse effects on water treatment plant operations and aquatic ecosystems, necessitating turbidity management. Consequently, research aimed at predicting river turbidity continues. This study developed a multi-class classification model for prediction of turbidity using LightGBM (Light Gradient Boosting Machine), a representative ensemble machine learning algorithm. The model utilized data that was classified into four classes ranging from 1 to 4 based on turbidity, from low to high. The number of input data points used for analysis varied among classes, with 945, 763, 95, and 25 data points for classes 1 to 4, respectively. The developed model exhibited precisions of 0.85, 0.71, 0.26, and 0.30, as well as recalls of 0.82, 0.76, 0.19, and 0.60 for classes 1 to 4, respectively. The model tended to perform less effectively in the minority classes due to the limited data available for these classes. To address data imbalance, the SMOTE (Synthetic Minority Over-sampling Technique) algorithm was applied, resulting in improved model performance. For classes 1 to 4, the Precision and Recall of the improved model were 0.88, 0.71, 0.26, 0.25 and 0.79, 0.76, 0.38, 0.60, respectively. This demonstrated that alleviating data imbalance led to a significant enhancement in Recall of the model. Furthermore, to analyze the impact of differences in input data composition addressing the input data imbalance, input data was constructed with various ratios for each class, and the model performances were compared. The results indicate that an appropriate composition ratio for model input data improves the performance of the machine learning model.

Experimental Comparison and Analysis of Measurement Results Using Various Flow Meters (유량측정 기기별 측정성과에 대한 실험적 비교분석)

  • Lee, Jae-Hyug;Lee, Suk-Ho;Jung, Sung-Won;Kim, Tae-Woong
    • Journal of Wetlands Research
    • /
    • v.12 no.1
    • /
    • pp.95-103
    • /
    • 2010
  • Discharge data examine the process of hydrologic cycle and used significantly in water resource planning and irrigation and flood control planning. However, it needs lots of time and money to get the discharge data. So discharge rating curve is usually used in converting discharge data. Therefore reliability of discharge rating curve absolutely depends on quality of discharge data. Many engineers who study hydrologic engineering make high quality discharge data to develop reliable discharge rating curve. And they carry out research on standard and method of discharge measurement, and equipment improvement. Now various flow meters are utilized to make discharge data in Korea. However, accuracy of equipment and experimental research data from measurement are not enough. In this paper, constant discharge flowed through standard concrete channel, and the velocity is measured using various flow meters. Also Discharge is calculated by measured data to compare and analyze. The equipment for the experiment is Price AA(USGS Type AA Current meter), flow meter, ADC, C2 small current meter, flow tracker, Electromagnetic current meter. The discharge got form various flow meters which are widely used for discharge measurement. The various depths of water were examined and compared such as 0.30 m, 0.35 m, 0.40 m, 0.45 m, 0.50 m, 0.55 m. The experiment progresses a round-measurement on 6-case. Wading measurement(one point method : the 60 % height in surface of the water) was applied to improve creditability and accuracy among measurement methods. USGS Type AA current Meter, Flow Meter, ADC, C2 Small Current meter got the certificate of quality guaranteed. So the results of experiment were used to compare discharge. The Results showed the difference based on USGS Type AA current Meter at average discharge and velocity. Electromagnetic current meter made differences over $\pm$ 10 % and Flow Meter made differences under $\pm$ 10 %. Also ADC, Flow Meter, C2 Small Current meter made differences under $\pm$ 5 %.

Assessment of Methane Production Rate Based on Factors of Contaminated Sediments (오염퇴적물의 주요 영향인자에 따른 메탄발생 생성률 평가)

  • Dong Hyun Kim;Hyung Jun Park;Young Jun Bang;Seung Oh Lee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.45-59
    • /
    • 2023
  • The global focus on mitigating climate change has traditionally centered on carbon dioxide, but recent attention has shifted towards methane as a crucial factor in climate change adaptation. Natural settings, particularly aquatic environments such as wetlands, reservoirs, and lakes, play a significant role as sources of greenhouse gases. The accumulation of organic contaminants on the lake and reservoir beds can lead to the microbial decomposition of sedimentary material, generating greenhouse gases, notably methane, under anaerobic conditions. The escalation of methane emissions in freshwater is attributed to the growing impact of non-point sources, alterations in water bodies for diverse purposes, and the introduction of structures such as river crossings that disrupt natural flow patterns. Furthermore, the effects of climate change, including rising water temperatures and ensuing hydrological and water quality challenges, contribute to an acceleration in methane emissions into the atmosphere. Methane emissions occur through various pathways, with ebullition fluxes-where methane bubbles are formed and released from bed sediments-recognized as a major mechanism. This study employs Biochemical Methane Potential (BMP) tests to analyze and quantify the factors influencing methane gas emissions. Methane production rates are measured under diverse conditions, including temperature, substrate type (glucose), shear velocity, and sediment properties. Additionally, numerical simulations are conducted to analyze the relationship between fluid shear stress on the sand bed and methane ebullition rates. The findings reveal that biochemical factors significantly influence methane production, whereas shear velocity primarily affects methane ebullition. Sediment properties are identified as influential factors impacting both methane production and ebullition. Overall, this study establishes empirical relationships between bubble dynamics, the Weber number, and methane emissions, presenting a formula to estimate methane ebullition flux. Future research, incorporating specific conditions such as water depth, effective shear stress beneath the sediment's tensile strength, and organic matter, is expected to contribute to the development of biogeochemical and hydro-environmental impact assessment methods suitable for in-situ applications.