• Title/Summary/Keyword: Water quality analysis

Search Result 3,149, Processing Time 0.031 seconds

Evaluation of Water Quality Characteristics in the Nakdong River using Multivariate Analysis (다변량 통계분석을 이용한 낙동강 상수원수의 수질변화 특성 조사)

  • Kim, Gyungah;Kim, Yejin;Song, Mijeong;Ji, Keewon;Yu, Pyungjong;Kim, Changwon
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.814-821
    • /
    • 2007
  • This study was estimated water quality to raw water quality management of the Maeri intake station in the Nakdong River using Multivariate Analysis. The results of Principle Component Analysis was explained up to 76.9% of total water quality by three principle components. The 1st, 2nd was explained 44.7%, 17.9% and third was explained 14.3%. Also, the three factors was derived from Factor Analysis. The 1st factor was estimated as the matabolism and organic matter pattern related to algal growth. The 2nd factor was judged as the pollution of pattern related to the discharge from stream of the Nakdong River and 3rd factor was viewed as the hydrological variation pattern related to particle matter. The results of Cluster Analysis were classified into three groups.

Watershed Selection for Diffuse Pollution Management Based on Flow Regime Alteration and Water Quality Variation Analysis (유황분석과 수질변화 평가를 통한 비점오염원 관리대상지역 선정방법 연구)

  • Jung, Woohyeuk;Yi, Sangjin;Kim, Geonha;Jeong, Sangman
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.2
    • /
    • pp.228-234
    • /
    • 2011
  • The goal of water quality management on stream and watershed is to focus not on discharged loads management but on a water quality management. Discharged loads management is not goal of water quality management but way for perform with total maximum daily loads management. It is necessary to estimate the relation between non-point source with stromwater runoff (NPSSR) and water quality to select a watershed where it is required to manage NPSSR for water quality improvement. To evaluate the effects of NPSSR on stream's water quality, we compare the aspects of water quality in dry and wet seasons using flow duration curve analysis based on flow rate variation data by actual surveying. In this study we attempt to quantify the variation characteristic of water quality and estimate the Inflow characteristic of pollution source with water quality and flow rate monitoring on 10 watersheds. We try to estimate water quality and flow rate by regression analysis and try again regression analysis with each high and low water quality data more than estimations. An analysis of relation between water quality and flow rate of 10 watersheds shows that the water quality of the Nonsan and the Ganggyeong streams had been polluted by NPSSR pollutants. Other eight streams were important point source more than NPSSR. It is wide variation range of $BOD_5$ also high average concentration of $BOD_5$. We have to quantify water quality variation by cv1 in wet season and cv365 in dry season with comparing the estimate of high water quality and low water quality. This method can be used to indicator for water quality variation according to flow rate.

Multivariate Analysis of Water Quality Data at 14 Stations in the Geum-River Watershed (금강유역 14개 관측점의 수질자료를 이용한 수질의 다변량분석)

  • 임창수
    • Journal of Environmental Science International
    • /
    • v.8 no.3
    • /
    • pp.331-336
    • /
    • 1999
  • The monthly water quality data measured at 14 stations located in the Geum-River watershed were clustered into 2 to 7 clusters. Furthermore, factor analyses were conducted on Gabcheon and Yugucheon to characterize the water qualtiy, based on the information obtained from the results of culster analysis. The results of cluster analysis show that the water quality charactersitic of main stream of the Geum-River is somewhat different from that of substream of the Geum-River. Furthermore, the water quality characteristic of Gabcheon which is expected to have the most serious water quality problems in the Geum-River watershed shows the most different water quality characteristic from Yugucheon. Based ont he factor loadings in each factor, Gabcheon and Yugucheon have their own water quality characteristics. This is mainly because of composite factors such as different population density, industrial activities, and land use conditions in Gabcheon and Yugucheon subwatersheds.

  • PDF

An Factor Analysis of Groundwater in Chongju City (청주시 지하수의 인자분석)

  • 남기창
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.4
    • /
    • pp.6-14
    • /
    • 2003
  • A spring water quality was depend on the aquifer soil status. However, water quality was rapidly contaminated by artificial affects. In the contaminate components, the heavy metals were significantly important because the heavy metals influence the plants and the animals. But, it is difficult to find out how the heavy metal can affect in the water quality. According to the group analysis and the factor analysis, water quality management was advanced. The experimental area was divided into three region and six factor. The six factor could not define the overall water quality, however this method were one of the useful methods.

A study on colored water treatment at purification plant (정수장 색수의 처리기법에 관한 연구)

  • Park, S.I.;Lee, J.H.;Lee, H.H.;Kim, H.B.;Ahn, G.W.;Park, K.N.;Kim, Y.K.;Bae, J.S.;Mun, H.;Park, C.U.;Oh, E.H.;Seo, Y.G.
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.4
    • /
    • pp.55-61
    • /
    • 2001
  • There are many reservoirs used as the source of water supply and they show various specific characteristics in water quality depend seasonal. Especially, there were not a little variations of water quality in summer, as a natural consequence it follows that stratification occured phenomenon and changed anaerobic condition in the bottom of reservoir, and then accumulated Fe and Mn substance in soil and sediment were resolved into water, it attributes to coloration. G purification plant located in Y gun is very small plant in which coloration occurs by Fe and Mn in every summer. Using this plant as a model, the removal methods of Fe and Mn were studied. After prechlorination plus LAS coagulation, Fe, Mn, $NH_3-N$ were decreased from 7.290 mg/l to 0.080 mg/l, from 0.480 mg/l to 0.075 mg/l, from 0.55 mg/l to 0.04 mg/l. But $THM_{s}$ was increased from 0.050 mg/l to 0.044 mg/l. It shows that the prechlorination plus LAS coagulation treatment process in purification plant is effective to remove Fe and Mn ion.

  • PDF

A Study on the Related Characteristics of Discharge-Water Quality in Nakdong River (낙동강 주요지점에서 유량-수질의 관련특성에 관한 연구)

  • Cho, Hyeon-Kyeong
    • Journal of Environmental Science International
    • /
    • v.20 no.3
    • /
    • pp.373-384
    • /
    • 2011
  • This study aims at the examination of the relative characteristics of discharge and water quality in river basins using statistical methods. For it, water quality and discharge data was collected in observed stations of Nakdong river and carried out correlation analysis, regression analysis, factor analysis and cluster analysis. And it was investigated the applicability of water quality prediction using Nearest-neighbor method. As a result, it grasped a trenditional characteristics and mutual relations between discharge an water quality data. Therefore, this results were suggested the comprehensive data and methods for a management of water quality, effective operation and policy development in Nakdong river basin.

Assessment of seasonal variations in water quality of Brahmani river using PCA

  • Mohanty, Chitta R.;Nayak, Saroj K.
    • Advances in environmental research
    • /
    • v.6 no.1
    • /
    • pp.53-65
    • /
    • 2017
  • Assessment of seasonal changes in surface water quality is an important aspect for evaluating temporal variations of river pollution due to natural or anthropogenic inputs of point and non-point sources. In this study, surface water quality data for 15 physico-chemical parameters collected from 7 monitoring stations in a river during the years from 2014 to 2016 were analyzed. The principal component analysis technique was employed to evaluate the seasonal correlations of water quality parameters, while the principal factor analysis technique was used to extract the parameters that are most important in assessing seasonal variations of river water quality. Analysis shows that a parameter that is most important in contributing to water quality variation for one season may not be important for another season except alkalinity, which is always the most important parameters in contributing to water quality variations for all three seasons.

Auto Calibration of Water Quality Modeling Using NGIS (NGIS자료와 연계한 수질모의 결과의 자동보정)

  • Han, Kun Yeun;Lee, Chang Hee;Kim, Kang Mo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1400-1403
    • /
    • 2004
  • The current industrial development and the Increase of population along Nakdong River have produced a rapid Increase of wastewater discharge. This has resulted in problem of water quality control and management. Although many efforts have been carried out, water quality has not significantly improved. The goal of this study is to design a NGIS-based water quality management system for the scientific water quality control and management in the Nakdong River. For general water quality analysis, QULA2E model was applied to the Nakdong River. A sensitivity analysis was made to determine significant parameters and an optimization was made to estimate optimal values. The calibration and verification were performed by using observed water quality data for Nakdong River. A water qualify management system for Nakdong River was made by connecting the QUAL2E model to ArcView. It allows a Windows-based Graphic User Interface(GUI) to implement all operation with regard to water quality analysis. The modeling system in this study will be an efficient NGIS for planning of water quality management.

  • PDF

Spatial Water Quality Analysis of Main Stream of Nakdong River Considering the Inflow of Tributaries (유입지천을 고려한 낙동강 본류구간의 공간적 수질특성 분석)

  • Kim, Sorae;Kim, Sang Min
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.640-649
    • /
    • 2017
  • The purpose of this study is the analysis of the water quality spatial characteristics for the main stream of Nakdong River in consideration of the tributary inflow. The flow and water quality (BOD, TOC, TP) data for 32 monitoring stations located in the main stream and the tributaries of Nakdong River were collected from 2003 to 2016. From the results of the flow and water quality analyses for each site, a status map of the flow and the water quality for Nakdong River was produced. The water quality of each river section was classified according to seven river-environment standards. The water quality changes in the main stream before and after the confluence were analyzed spatially. As a result, the water quality of Kumho River, in particular the Kumho B to Kumho C section, is the worst among the tributaries. In addition, the water quality grades of the lower streams such as Nam River and Miryang are worse than that of the upper streams of the Nakdong River. In the case of the main stream, the water quality grades of the sections between the Wicheon and Nam River confluences and the section from Nakbon L to Nakbon N are relatively poor.

Deriving Water Quality Criteria of Total Nitrogen for Nutrient Management in the Stream (하천에서의 영양물질 관리를 위한 총질소 환경기준 설정에 관한 연구)

  • Kim, Hak Kwan;Jeong, Han;Bae, Seung Jong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.3
    • /
    • pp.121-127
    • /
    • 2015
  • The objective of this study is to suggest the water quality criteria of total nitrogen in order to efficiently manage the nutrient pollution in the stream. For this, correlations between water quality parameters were examined using the water quality data collected from the water quality monitoring network in the four rivers between 2003 and 2012. T-N showed positive correlations with T-P (0.636), COD (0.577), BOD (0.574), TOC (0.440), and SS (0.367). The statistical analysis including percentile analysis for the T-N and T-P concentrations was utilized to develop the water quality criteria of T-N. The feasibility of the suggested water quality criteria was evaluated by calculating the achievement rate to water quality target at the representative points in mid-watershed, then the draft water quality standard of T-N was suggested. The suggested water quality standard of T-N in the stream may be used to efficiently control the nutrient pollution in the public water body.