• Title/Summary/Keyword: Water pump

Search Result 1,498, Processing Time 0.04 seconds

A Brief Review on Membrane-Based Hydrogen Isotope Separation (막 기반 수소동위원소 분리 연구에 대한 총설)

  • Soon Hyeong So;Dae Woo Kim
    • Membrane Journal
    • /
    • v.34 no.2
    • /
    • pp.114-123
    • /
    • 2024
  • Hydrogen isotopes can be categorized into light hydrogen, heavy hydrogen, and tritium based on the number of neutrons, each of which is used in specific fields. Specifically, deuterium is of interest in the electronics industry, nuclear energy industry, analytical technology industry, pharmaceutical industry, and telecommunications industry. Conventional methods such as cold distillation, thermal cycling absorption processes, Girdler sulfide processes, and water electrolysis have their own advantages and disadvantages, leading to the need for alternative technologies with high separation and energy efficiency. In this context, membrane-based hydrogen isotope separation is one of the promising solutions to reduce energy consumption. In this review, we will present the state-of-the-art in hydrogen isotope separation using membranes and their operating principles. The technology for separating hydrogen isotopes using membranes is just beginning to be conceptualized, and many challenges remain to be overcome. However, if achieved, the economic benefits are expected to be significant. We will discuss future research directions for this purpose.

Stabilizing Soil Moisture and Indoor Air Quality Purification in a Wall-typed Botanical Biofiltration System Controlled by Humidifying Cycle (가습 주기에 따른 벽면형 식물바이오필터의 토양 수분 안정화 및 실내공기질 정화)

  • Lee, Chang Hee;Choi, Bom;Chun, Man Young
    • Horticultural Science & Technology
    • /
    • v.33 no.4
    • /
    • pp.605-617
    • /
    • 2015
  • The ultimate goal of this research is to develop a botanical biofiltration system that combines a green interior, biofiltering, and automatic irrigation to purify indoor air pollutants according to indoor space and the size of biofilter. This study was performed to compare the stability of air flow characteristics and removal efficiency (RE) of fine dust within a wall-typed (vertical) botanical biofilter depending on humidifying cycle and to investigate RE of volatile organic compounds (VOCs) by the biofilter. The biofilter used in this experiment was designed as an integral form of water metering pump, water tank, blower, humidifier, and multi-level planting space in order to be suitable for indoor space utilization. As a result, relative humidity, air temperature, and soil moisture content (SMC) within the biofilter showed stable values regardless of three different humidifying cycles operated by the metering pump. In particular, SMCs were consistently maintained in the range of 27.1-29.7% during all humidifying cycles; moreover, a humidifying cycle of operating for 15 min and pausing for 45 min showed the best horizontal linear regression (y = 0.0008x + 29.09) on SMC ($29.0{\pm}0.2%$) during 120 hour. REs for number of fine dust (PM10) and ultra-fine dust (PM2.5) particles passed through the biofilter were in the range of 82.7-89.7% and 65.4-73.0%, respectively. RE for weight of PM10 passed through the biofilter was in the range of 58.1-78.9%, depending on humidifying cycle. REs of xylene, ethyl benzene, total VOCs (TVOCs), and toluene passed through the biofilter were in the range of 71.3-75.5%, while REs of benzene and formaldehyde (HCHO) passed through the biofilter were 39.7% and 44.9%, respectively. Hence, it was confirmed that the wall-typed botanical biofilter suitable for indoor plants was very effective for indoor air purification.

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2008 (설비공학 분야의 최근 연구 동향: 2008년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Choi, Chang-Ho;Lee, Dae-Young;Kim, Seo-Young;Kwon, Yong-Il;Choi, Jong-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.12
    • /
    • pp.715-732
    • /
    • 2009
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2008. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends in thermal and fluid engineering have been surveyed in the categories of general fluid flow, fluid machinery and piping, new and renewable energy, and fire. Well-developed CFD technologies were widely applied in developing facilities and their systems. New research topics include fire, fuel cell, and solar energy. Research was mainly focused on flow distribution and optimization in the fields of fluid machinery and piping. Topics related to the development of fans and compressors had been popular, but were no longer investigated widely. Research papers on micro heat exchangers using nanofluids and micro pumps were also not presented during this period. There were some studies on thermal reliability and performance in the fields of new and renewable energy. Numerical simulations of smoke ventilation and the spread of fire were the main topics in the field of fire. (2) Research works on heat transfer presented in 2008 have been reviewed in the categories of heat transfer characteristics, industrial heat exchangers, and ground heat exchangers. Research on heat transfer characteristics included thermal transport in cryogenic vessels, dish solar collectors, radiative thermal reflectors, variable conductance heat pipes, and flow condensation and evaporation of refrigerants. In the area of industrial heat exchangers, examined are research on micro-channel plate heat exchangers, liquid cooled cold plates, fin-tube heat exchangers, and frost behavior of heat exchanger fins. Measurements on ground thermal conductivity and on the thermal diffusion characteristics of ground heat exchangers were reported. (3) In the field of refrigeration, many studies were presented on simultaneous heating and cooling heat pump systems. Switching between various operation modes and optimizing the refrigerant charge were considered in this research. Studies of heat pump systems using unutilized energy sources such as sewage water and river water were reported. Evaporative cooling was studied both theoretically and experimentally as a potential alternative to the conventional methods. (4) Research papers on building facilities have been reviewed and divided into studies on heat and cold sources, air conditioning and air cleaning, ventilation, automatic control of heat sources with piping systems, and sound reduction in hydraulic turbine dynamo rooms. In particular, considered were efficient and effective uses of energy resulting in reduced environmental pollution and operating costs. (5) In the field of building environments, many studies focused on health and comfort. Ventilation. system performance was considered to be important in improving indoor air conditions. Due to high oil prices, various tests were planned to examine building energy consumption and to cut life cycle costs.

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2014 (설비공학 분야의 최근 연구 동향: 2014년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.7
    • /
    • pp.380-394
    • /
    • 2015
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2014. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of heat and mass transfer, cooling and heating, and air-conditioning, the flow inside building rooms, and smoke control on fire. Research issues dealing with duct and pipe were reduced, but flows inside building rooms, and smoke controls were newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for thermal contact resistance measurement of metal interface, a fan coil with an oval-type heat exchanger, fouling characteristics of plate heat exchangers, effect of rib pitch in a two wall divergent channel, semi-empirical analysis in vertical mesoscale tubes, an integrated drying machine, microscale surface wrinkles, brazed plate heat exchangers, numerical analysis in printed circuit heat exchanger. In the area of pool boiling and condensing, non-uniform air flow, PCM applied thermal storage wall system, a new wavy cylindrical shape capsule, and HFC32/HFC152a mixtures on enhanced tubes, were actively studied. In the area of industrial heat exchangers, researches on solar water storage tank, effective design on the inserting part of refrigerator door gasket, impact of different boundary conditions in generating g-function, various construction of SCW type ground heat exchanger and a heat pump for closed cooling water heat recovery were performed. (3) In the field of refrigeration, various studies were carried out in the categories of refrigeration cycle, alternative refrigeration and modelling and controls including energy recoveries from industrial boilers and vehicles, improvement of dehumidification systems, novel defrost systems, fault diagnosis and optimum controls for heat pump systems. It is particularly notable that a substantial number of studies were dedicated for the development of air-conditioning and power recovery systems for electric vehicles in this year. (4) In building mechanical system research fields, seventeen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the evaluation of work noise in tunnel construction and the simulation and development of a light-shelf system. The subjects of building energy were worked on the energy saving of office building applied with window blind and phase change material(PCM), a method of existing building energy simulation using energy audit data, the estimation of thermal consumption unit of apartment building and its case studies, dynamic window performance, a writing method of energy consumption report and energy estimation of apartment building using district heating system. The remained studies were related to the improvement of architectural engineering education system for plant engineering industry, estimating cooling and heating degree days for variable base temperature, a prediction method of underground temperature, the comfort control algorithm of car air conditioner, the smoke control performance evaluation of high-rise building, evaluation of thermal energy systems of bio safety laboratory and a development of measuring device of solar heat gain coefficient of fenestration system.

Development of air-conditioning and drinking water supply system using air-water heat pump (공기-물 히트펌프를 이용한 공조 및 음용수급수시스템 개발)

  • Paek, Yee;Kang, Sukwon;Jang, Jae-Kyung;Kim, Young-Hwa
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.118-118
    • /
    • 2017
  • 지구 온난화에 따른 환경변화로 인하여 최근 10년('02~'11)간 여름의 일수는 4일, 겨울 일수는 16일 각각 증가하였다. 현재 육계사 내의 고밀도 밀집사육으로 인하여 고온스트레스로 하절기 육계의 폐사율이 증가하고 있는 실정이다. 2016년 폭염으로 닭 406.1천수, 오리 15.7천수, 메추리 70천수, 돼지 8천수가 폐사하였다. 이에 혹서기 가축이 약430만수가 폐사하였으며 피해 보상금액 128억원 소요되었다. 본 연구에서는 하절기 고온스트레스 경감과 폐사율 저감을 위해 계사 냉난방 공조와 냉온 음용수 급수를 병행할 수 있는 고효율 환경 개선 시스템을 개발하여 고온스트레스 저감 및 생산성 향상에 목적이 있다. 계사 냉난방 공조 및 냉온음용수 급수 병행 시스템 설계요인을 분석하고 냉난방 공조부하, 냉온수 생산 부하를 고려한 시스템 용량 산정하고 히트펌프, 축열조, 냉난방 및 냉온수 분배장치 등 구성요소로서 공조 및 냉온음용수 급수시스템을 설치하였다. 시스템 용량은 공기-물 히트펌프(10kW,1대), 축열조(10톤), 음용수조(2톤), 열교환기(열교환량,5만kcal/h), 물순환펌프(250W,2대) 및 팬코일유닛(1만kcal/h,4대)으로 시스템 모니터링 및 제어 시스템 개발하여 계사 내 환경, 시스템 성능에 대한 실시간 모니터링을 통하여 저장하였다. 조사항목으로 위치별 온습도, 체중, 사료섭취량, 페사율 등을 조사 분석하였다. 연구결과 계사의 내부온도는 시험구에서는 평균 $25.3^{\circ}C$를 나타내었고 대조구에서는 평균 $28.1^{\circ}C$로서 $2.8^{\circ}C$ 높게 나타났으나 상대습도는 시험구 76.2%, 대조구 75.0%로 큰 차이가 없었다. 냉수급여에 따른 계사 높이별 내부온도는 상하의 온도차가 $4.5^{\circ}C$로 크게 차이가 났다. 육계의 음수량은 혹서기 냉수를 급여한 시험구에서 일일 23.2L, 대조구에서는 21.5L를 섭취하였다. 일일 사료섭취량은 냉수를 급여한 시험구에서 937g, 대조구에서는 725g을 섭취하였다. 사료섭취량은 냉수를 급여한 시험구가 212g 많이 섭취하였으며 사료요구율은 시험구는 1.86, 대조구는 1.91로서 시험구가 낮게 나타났다. 체중은 냉수를 급여한 시험구가 359g 많았으며 증체량은 냉수를 급여한 시험구에서 495g, 대조구에서는 392g으로 나타났다. 폐사율은 냉수를 급여한 시험구에서 84%가 폐사율을 줄일 수 있었다.

  • PDF

A Study on Gathering Behaviour of Fish in the Artificial Sea-floor Area (인공해저에 대한 어류의 위집기구에 관한 연구)

  • 홍성완
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.2
    • /
    • pp.96-104
    • /
    • 2000
  • By using the offshore type submersible platform, Artificial sea floor anchored at a depth of forty meters several experimental studies have been conducted successfully during 1996. The facility consists of an artificial sea floor that floats at 7 meters below the surface, a machinery hut that projects above the surface at the center of the structure and a balance weight beneath the structure. The facility can be surfaced easily by using a water discharging pump in the water tank which is located at the center of it. To find out the behavioral character and the gathering factor of fishes around the artificial sea floor, investigations were carried out during the daytime and nighttime by direct observation and by echo-sounder. Around the testing reefs and artificial sea floor, six kinds of fishes were found by diving observation and the dominants were Scomber japonicus, Sebastes thompsoni and Oplegnathus fascitus. As Scomber japonicus was distributed around the artificial sea floor in dense small school, they were not seen elsewhere in the survey area. The artificial sea floor was concluded to act as a schooling ground far Scomber japonicus, Sebastes thompsoni and Oplegnathus fascitus. were close to the testing reefs(within 10m) in the daytime, and were thought to settle on the testing reefs at nighttime, To examine the distribution of 7shes around the artificial sea floor, an acoustic survey over a 1$\times$1km area, 0-50m in depth during the all day. Around the artificial sea floor many thin scattering fish echo(TS-54.5~ -51.5dB) and dense fish echo(TS-41~-38dB) were mainly distributed. Many scattering fish echoes, which were thought to be a mixture of small squid, pelegic crustacea and ethers, were distributed over the whole survey area. A dense fish school stayed beneath the artificial sea floor for a short duration. These phenomena were concluded to show an attraction and detention function of the artificial sea floor.

  • PDF

Performance Analysis of Intake Screens in Power Plants on Mass Impingement of Marine Organisms (발전소 취수구에 대량으로 유입하는 해양생물에 대한 스크린 설비의 성능분석)

  • Lee, Jae-Hac;Choi, Hyun-Woo;Chae, Jin-Ho;Kim, Dong-Sung;Lee, Seung-Baek
    • Ocean and Polar Research
    • /
    • v.28 no.4
    • /
    • pp.385-393
    • /
    • 2006
  • Screening performance of the existing intake screens (drum and travelling screen) on mass impingement of marine animals, a euphausiid, Euphausia pacifica and a scyphozoan medusae, Aurelia aurita that have often clogged intake screens of the Uljin Nuclear Power Plant, was tested. The maximum tolerable densities of marine animals in the inflowing seawater upon the screen were estimated with two different approaches. First the maximum density of jellyfish was calculated from (1) passing amount of seawater per unit time through the screens and (2) the covered area of animals on the screens clogged. The maximum density of krill tolerable in the drum screen was cited from a simulated record of Uljin NPP, then those in the travelling screens were also calculated using the data of drum screen and ratio of seawater amount passing through the screens under the condition of 0.5m water column (W.C.) of the differential pressure (AP) produced by screens, an established permissible limit of ${\Delta}P$. Secondly, the screening performances were also tested by hydrodynamic measurements with various screen models in a circulating water channel equipped with a speed-controlling pump and a differential pressure gauge. From the first approach, the maximum tolerable densities of drum and travelling screen were calculated as 2.0 and $1.5ind/m^3$ for the Jellyfish and 900 and $680ind./m^3$ for the euphausiid, respectively. These densities estimated from the second approach were 2.1 and $0.8ind/m^3$ for the jellyfish and 1059 and $504ind/m^3$ for the euphausiid, respectively. These estimates were compared with the data from historic clogging events to evaluate the practical performance of these intake screens. The comparisons suggest a newly improved intake-screen of which performance should be at least seven times (approximately) better than the existing ones ior the krill and 3.2 times for the jellyfish, respectively, for preventing mass impingement, and for maintaining the condition of the differential pressure between the screens below 0.3 m W.C.

The Treatment of Source Separated Food Waste by Mesophilic Anaerobic Digestion System with Leachate Recirculation (중온 침출수 재순환 혐기성 소화 시스템을 이용한 음식물류 폐기물 처리)

  • Cho, Chan-Hui;Lee, Byonghi;Lee, Yong-Woon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.1
    • /
    • pp.31-40
    • /
    • 2016
  • In this study, mesophilic anaerobic digestion of source separated food waste was carried out by leachate recirculation system and methane gas was produced. Two systems - system A and B were fabricated and placed within water bath to maintain $36^{\circ}C$. Each system was comprised of an anaerobic bioreactor and a leachate tank. Leachate in bioreactor was separated through the screen located at 30 mm above the bottom and a pump was installed to transfer collected leachate to the leachate tank. Everyday, 2.5 L of the leachate was pumped from the bioreactor to the leachate tank for 30 min and transferred leachate was pumped back to the top of the bioreactor for 30min, sequentially. Source separated food waste used for this experiment was washed by water before transferring to the laboratory. Transferred food waste was warmed to $36^{\circ}C$ before being fed to bioreactors. System A was fed to 49.1 g VS (Volatile Solids) and System B was fed to 54.0 g VS at every two weeks, respectively. $NH_4{^+}-N$ and salinity were monitored to see the inhibition toward anaerobic bioreaction and it was found that concentrations of these materials were not high enough to affect the bioreaction. Although the food waste was fed biweekly for 112 days and 140 days at system A and B, respectively, there was no sludge withdrawal from each system. Average methane productions rates were 0.439 L $CH_4/g$ VS and 0.368 L $CH_4/g$ VS for system A and B, respectively.

An Analysis of Scour Effect on Hydraulic Energy Dissipater Installation at Weir Downstream (보 하류부 감세공 설치에 대한 세굴 변화 분석)

  • Kang, Joon-Gu;Lee, Chang-Hun;Kim, Jong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.453-458
    • /
    • 2016
  • While the design of weirs requires a scour-considered strategy, research on the analysis of the effectiveness of hydraulic energy dissipaters and design criteria are scarce due to the limited experimental facilities and restraint in the experiment conduction period. The study analyzed the scour dissipation effect of multidirectional dissipaters to improve the scour problems of a weir downstream and suggests design criteria to minimize scour. A hydraulic model experiment was conducted for Nakdong River Hapcheon-Changnyeong Weir and a model in 1/25 of horizontal accumulation and 1/25 of vertical accumulation was produced. The experimental equipment was classified into channels and a flow rate supply and an underwater pump were installed to enable flow at a maximum of 2.0 m3/s. The experimental inflow was 1.3 m3/s, the upstream water level was 0.36 m, downstream water level was 0.24 m, and a cylinder wooden baffle, a dissipater, with a diameter of 0.05 m was made. A 3D scanner was also used for an accurate scour depth comparison for a length change of the baffle before and after installing the baffle. When the baffle was arranged in the shape of a V, the depth of scour decreased by 36% while the scour length decreased by 49% due to flow reduction compared to that before installing the baffle.

Sediment Transport Characteristics in a Pressure Pipeline (압력 원형관로내 유사이송특성 연구)

  • Son, Kwang Ik;Kim, Hyun Jung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3B
    • /
    • pp.205-209
    • /
    • 2011
  • The low carrying capacity caused by the deposition in a sewer line is one of the main reason of the urban flood. Therefore, an efficient maintenance and management of the storm water drainage system is very important to prevent urban flood. In this research, the sediment transport characteristics through a pressure pipeline were examined with laboratory experiments. Bed-forms in a pipeline, sediment rates, roughness due to sediments were examined. Experimental system consists of flow circulation system with a pump and a sediment feeder at the upstream of the pipeline. Sediments were supplied into a 60 mm-diameter and 8 m-long pipe. Maximum flow rate is $30m^3/hr$, and the sediment feeding rate range is 5 g/s~19 g/s. Governing parameters and estimation equation for sediment transport rate were developed. The mean velocity (U), coefficient of viscosity (${\mu}$), unit width bed load ($q_b$), mean diameter of particle ($d_{50}$), unit weight of sediment in water (${\gamma}^{\prime}_s$) were adopted as the most influencing factors of sediment transport patterns. The prediction equation for sediment transport rate were developed with two dimensionless terms. These two dimensionless terms showed a linear relationship with high correlation coefficient.