• Title/Summary/Keyword: Water pump

Search Result 1,496, Processing Time 0.028 seconds

Application of Air Lift Pump for Sludge Discharger (공기 양정(air lift) 펌프를 응용한 슬러지 배출장치에 대한 연구)

  • Ahn Kab-Hwan;Park Young-Seek
    • Journal of Environmental Science International
    • /
    • v.13 no.10
    • /
    • pp.929-938
    • /
    • 2004
  • Sludge discharger applied the principle of the air lift pump was investigated experimentally for the different design( diameter of discharge pipe, diameter and height of the inside and outside wall) and operating parameters(air flow rate, water level). And it was conducted that performance comparison about sludge discharger and conventional air lift pump. The result indicated that discharged liquid were increased with the increase of air flow rate and water level and decrease distance between inside and outside wall. The discharge pressure was increased with an increase of air flow rate and a decrease of the diameter of the discharge pipe, for both the sludge discharger and the airlift pump. The discharge pressures of the sludge discharger were 3-6 times higher than those of the air lift pump.

Experimental Study on the Cooling and Heating Operation Characteristics of a Sea Water Source Heat Pump (해수열원 히트펌프 시스템의 냉난방 운전 특성에 관한 실증 연구)

  • Kim, Ji-Young;Baik, Young-Jin;Chang, Ki-Chang;Ra, Ho-Sang
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.544-549
    • /
    • 2009
  • The purpose of this study is to investigate the field Operation Characteristics of a sea water heat source cascade heat pump system and system applicable to Building. Cascade heat pump system is composed R410A compressor, R134a compressor, EEV, cascade heat exchanger, Plate heat exchanger etc. Building area is $890m^2$ and has five floors above ground. R410A is used for a low-stage working fluid while R134a is for a high-stage. The system could runs at dual mode. One is mode of general R410A refrigeration cycle in summer and the other is cascade cycle. In order to gain a high temperature supply water in winter season, the system is designed to perform a cascade cycle. The filed test results show that the sea water heat source heat pump system exhibits a COP of about 5.5 in cooling mode along with a heating COP of about 4.0 in 1-stage heating mode. Cascade 2-stage heat pump system is enough to supply $60^{\circ}C$ water and heating COP is about 3.0

  • PDF

The Effects of Operational Conditions of Cooling Water System on Energy Consumption for Central Cooling System (냉각수 계통의 운전변수가 중앙냉방시스템의 에너지소비량에 미치는 영향)

  • Ahn, Byung-Cheon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.13 no.4
    • /
    • pp.8-13
    • /
    • 2017
  • The effects of operational conditions of cooling water system on energy consumption for central cooling system are researched by using TRNSYS program. Cooling tower water pump flow rate, cooling tower fan flow rate, and condenser water temperature with various dry-bulb and wet-bulb temperatures are varied and their effects on total and component power consumption are studied. If the fan maximum flow rates of cooling tower is decreased, cooling tower fan and total power consumptions are increased. If the cooling tower water pump maximum flow rates is decreased, chiller and total power consumptions are increased. If condenser water set-point temperature is increased, chiller power consumption is increased and cooling tower fan power consumption is decreased, respectively.

Development of Water Management System for Optimal Operation and Control in Wide-area Waterworks (광역상수도의 최적운영 및 제어를 위한 수운영시스템 개발)

  • 남의석;우천희;김학배
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.7
    • /
    • pp.489-497
    • /
    • 2003
  • A water management system is developed to reduce the unit cost of production in wide-area waterworks. Improving productivity in waterworks is to save power rate. We suggest a method to schedule the supply of water according to the time-varying power rate and pump control scheme. Water pipeline analysis package (SynerGEE Water) is utilized to obtain optimal pump control solution adaptation to water demand. Our evaluation results show that developed scheme is more efficient than the conventional.

Modal Analysis and Testing of a High Head Pump/Turbine Runner (고낙차 수력 펌프/터빈 런너에 대한 진동 모드해석 및 실험)

  • 류석주;하현천
    • Journal of KSNVE
    • /
    • v.8 no.6
    • /
    • pp.1062-1068
    • /
    • 1998
  • This paper describes the vibration characteristics of a high head pump-turbine runner. with nine blades and an outer diameter of 4.410 mm. of the pumped storage power plant. Mode shapes and natural frequencies were obtained by means of both the finite element analysis and modal testing. both in air and in water. The natural frequencies in air were calculated using the finite element method by ANSYS software. In order to confirm calculation results. the natural frequencies and mode shapes of the runner were measured using a hydraulic exciter both in air and in water. Natural frequencies of the pump-turbine runner were found at 174. 310 Hz in air, and at 107. 184 Hz in water. The first mode shape is flat plate mode with two nodal diameter and the second one is also flat plate mode with three nodal diameter. It can be shown that the natural frequencies of the pump-turbine runner in water is reduced approximately 40 % due to additional mass effect. Natural frequencies in air predicted by ANSYS software are in good agreement with test results.

  • PDF

A Study on Performance Characteristics of Small Airlift Pump (소형 에어리프트 펌프의 성능특성에 관한 연구)

  • Oh, S.K.;Lee, G.Y.
    • Journal of Power System Engineering
    • /
    • v.4 no.3
    • /
    • pp.34-39
    • /
    • 2000
  • Performance data in the literature on air lift pumps have been based primarily on pumps of long length and large diameter (high lift pumps). Since mariculture operations involve pumps of relatively short length and small diameter, performance data are required for efficient operation. To provide such data, an experimental apparatus was designed and fabricated to test all lift pumps from 2.1 to 3.4 cm inside diameter and from 40 to 300 cm in length. Instrumentation was provided to measure water flow rate and air flow rate as well as water temperature, air temperature, and pressure throughout the system. Results from this study correlate well with high lift pump data in that, for a given pump geometry, maximum water flow occurs for a specific air flow rate. Driving the pump with air flows larger or smaller than this optimum flow rate will decrease the pumping rate. The optimum flows are significantly different for low lift pumps compared to high lift pumps. However, the pumping rate for low lift pumps approaches that for high lift pumps with increasing length.

  • PDF

Study on the aquifer utilization for a ground water heat pump system (지하수 히트펌프 시스템의 대수층 활용 사레 연구)

  • Shim, Byoung-Ohan;Lee, Chul-Woo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.32-35
    • /
    • 2006
  • The validation of a groundwater source heat pump system installation site is estimated by bydrogeothermic model ing. The hydraulic characteristics of the aquifer system is evaluated from pumping and recovery tests. In addition, the temperature distribution by the pumping and the injection of groundwater, and water level fluctuations are simulated by numerical modeling. The total cooling and heating load for the building is designed as 120RT(refrigeration ton) and the ground water source heat pump system covers 50RT as a subsidiary system The scenario of heat pump operation is organized as pumping and inject ion of groundwater that is performed for 8 hours per day in cooling mode for 90 days during the summer season The heat transfer by the injected warm water is limited near the inject ion wells in the simulated temperature distribution. The reason is that the given operation time is too short to expect broad thermal diffusion in large volume of the aquifer in the simulation time The simulated groundwater level and temperature distribution can be used as important data to develope an energy effective pumping and injection well system. Also it will be very useful to evaluate the hydraulic capacity of a target groundwater reservoir.

  • PDF

Experiments on Single-Disk Pumps for the Transportation of Micro-scale Water Life (미소 수중 생물체 이송용 단판 디스크 펌프의 성능 실험)

  • Zhang, Z.Q.;Chang, S.M.;Jeong, Y.H.;Yang, J.S.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.6
    • /
    • pp.18-25
    • /
    • 2011
  • A boundary-layer pump with a single disk has been experimented to obtain its characteristic curve by changing the impeller of a centrifugal pump to a single disk. The primary objective to use of these types of pumps is to avoid hurting water life during transportation unnecessarily. The change of impeller should degrade the performance of pump, so we used the method to increase the roughness on the disk with sandpaper and mesh. The enhancement of shear force from the rotation of disk to the internal flow brought an augmentation of momentum transport, and the characteristics were far improved from the original single-disk pump without decreasing the survival rate of water life in the case of Pseudobagrus fulvidraco (bullhead fish). However, in the case of Artemia cyst (zooplankton), the survival rate was very degraded due to the micro scale smaller than turbulent eddy size. The result of this study could be used for the design of transportation and bio-filtering of water lying on a specific bandwidth of its scale of size.