• Title/Summary/Keyword: Water preparation part

Search Result 54, Processing Time 0.025 seconds

Technological Studies on Textured Soybean Protein (Part I) -Effect of Drying Process on Gelling Properties of Soybean Protein Isolate- (대두단백육(大豆蛋白肉)의 제조(製造)에 관한 연구(硏究) (제 1 보(第 1 報)) -건조공정(乾燥工程)이 분리대두단백(分離大豆蛋白)의 Gel 성질에 미치는 영향-)

  • Moon, Juhn-Woong
    • Korean Journal of Food Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.49-55
    • /
    • 1970
  • In preparation of textured soybean protein, drying process of the isolated protein affected its gelling property and other related characteristics such as water holding capacity and viscosity. In model systems, denaturation of the protein, as determined in terms of nitrogen solubility index (NSI), was appeared to be a parameter of the gel strength of soybean protein isolate. The gel strength was maximum when the protein was denatured properly during drying process of which the NSI was 43 in this experiment and decreased at either the higher or the lower NSI. It indicated that proper denaturation of the protein during drying operation is advantagous for the preparation of textured soybean protein but not neccesary to make highly undenatured one.

  • PDF

Manufacture of Water-Resistant Corrugated Board Boxes for Agricultural Products in the Cold Chain System(II) - Application Methods of Chemicals for Improving Water and Moisture Resistance of Corrugated Boards - (농산물 저온유통용 내수 골판지 상자의 제조(제2보) - 골판지의 내수 및 내습성 향상을 위한 약품 적용 방법 -)

  • Jo, Jung-Yeon;Min, Choon-Ki;Shin, Jun-Seop
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2004.04a
    • /
    • pp.192-210
    • /
    • 2004
  • Application methods of chemicals were investigated tn minimize strength reduction of corrugated boards under the high humidity environment encountered in the cold chain system. Starch insolubilizers were introduced in the starch solution preparation of the Stain hall method and their insolubilization effect of starch binder were estimated. The performance of water repellent agents(WRA) and moisture proof agents(MPA) were evaluated in terms of water and moisture resistance. And effects of the combination of the chemicals and the coating method were also examined. Addition of the polyamine polyamide insolubilizer to the main part in the Stain hall process improved the binding force and water resistance of starch, which contributed to minimize the strength reduction of paper under the high humidity environment. AZC and Glyoxal type insolubilizers could not be used in the experiment due to an excessively increased viscosity of starch solution and the poor stability. Conventional WRA treatment to the base paper enhanced water and moisture resistance very slightly even though water repellency of the paper reached R10 by the treatment. MPA showed excellent performance than WRA not only in water and moisture resistance but in water repellency. Double coating on paper with MPA was more effective than the single coating at the same coating weight. A newly developed MPA showed excellent performance and runnability only by a single coating instead of a double coating.

  • PDF

Manufacture of Water-Resistant Corrugated Board Boxes for Agricultural Products in the Cold Chain System(II). -Application Methods of Chemicals for Improving Water and Moisture Resistance of Corrugated Boards- (농산물 저온유통용 내수 골판지 상자의 제조(제2보) - 골판지의 내수 및 내습성 향상을 위한 약품 적용 방법 -)

  • 조중연;민춘기;신준섭
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.2
    • /
    • pp.60-69
    • /
    • 2004
  • Application methods of chemicals were investigated to minimize strength reduction of corrugated boards under the high humidity environment encountered in the cold chain system. Starch insolubilizers were introduced in the starch solution preparation of the Stein hall method and their insolubilization effect of starch binder were estimated. The performance of water repellent agents(WRA) and moisture proof agents(MPA) were evaluated in terms of water and moisture resistance. And effects of the combination of the chemicals and the coating method were also examined. Addition of the polyamine polyamide insolubilizer to the main part in the Stein hall process improved the binding force and water resistance of starch, which contributed to minimize the strength reduction of paper under the high humidity environment. AZC and Glyoxal type insolubilizers could not be used in the experiment due to an excessively increased viscosity of starch solution and the poor stability. Conventional WRA treatment to the base paper enhanced water and moisture resistance very slightly even though water repellency of the paper reached R10 by the treatment. MPA showed excellent performance than WRA not only in water and moisture resistance but in water repellency. Double coating on paper with MPA was more effective than the single coating at the same coating weight. A newly developed MPA showed excellent performance and runnability only by a single coating instead of a double coating.

Studies on the Factors Affecting Quality and Textural Characteristics of Artificial Gluten Meat Part III: Effects of ammount of ingredients on properties of AGM(Water, Interactions of walnut and oil, Oil and water) (글루텐 인조육의 품질특성에 영향을 주는 요인과 물성에 관한 연구 -3보 : 각 요인이 품질 특성에 미치는 영향(물, 호두와 식용유 및 식용유와 물의 상호 영향))

  • 박춘란;장주익
    • Korean journal of food and cookery science
    • /
    • v.5 no.1
    • /
    • pp.15-21
    • /
    • 1989
  • These experiments were carried out to study the factors affecting quality and textural characteristics in the preparation of artificial gluten meat (AGM). Effects of amounts of ingredients on properties of AGM were summarized as follows: 1. The more amounts of water increased, the higher L and b values became, and AGM, therefore, became bright and yellow in color. The more increased the amount of water, the more decreased shear force, hardness and chewiness, but the water holding capacity increased. The 100% of water added sample approached to raw beef in L value, $\Delta$0E, hardness and chewiness. 2. The mixing ratio of walunt and com oil more affected on color than on texture, and the proper ratio was 30% of walunt and 10% of oil. 3. In the case of interactions of oil and water, water amounts affected more on color, shear force, chewiness and the water holding capacity than on oil. AGM mixed with the ratio of 10% of oil and 100% of water approached to raw beef.

  • PDF

Preparation of Polymeric Self-Assembly and Its Application to Biomaterials

  • Cho, Chong-Su;Park, In-Kyu;Nah, Jae-Woon;Toshihiro Akaike
    • Macromolecular Research
    • /
    • v.11 no.1
    • /
    • pp.2-8
    • /
    • 2003
  • The self-assembly of polymers can lead to supramolecular systems and is related to the their functions of material and life sciences. In this article, self-assembly of Langmuir-Blodgett (LB) films, polymer micelles, and polymeric nanoparticles, and their biomedical applications are described. LB surfaces with a well-ordered and layered structure adhered more cells including platelet, hepatocyte, and fibroblast than the cast surfaces with microphase-separated domains. Extensive morphologic changes were observed in LB surface-adhered cells compared to the cast films. Amphiphilic block copolymers, consisting of poly(${\gamma}$-benzyl L-glutamate) (PBLG) as the hydrophobic part and poly(ethylene oxide) (PEO) [or poly(N-isopropylacrylamide) (PNIPAAm)] as the hydrophilic one, can self-assemble in water to form nanoparticles presumed to be composed of the hydrophilic shell and hydrophobic core. The release characteristics of hydrophobic drugs from these polymeric nanoparticles were dependent on the drug loading contents and chain length of the hydrophobic part of the copolymers. Achiral hydrophobic merocyanine dyes (MDs) were self-assembled in copolymeric nanoparticles, which provided a chiral microenvironment as red-shifted aggregates, and the circular dichroism (CD) of MD was induced in the self-assembled copolymeric nanoparticles.

ELECTROCHEMICAL PROCESSING OF USED NUCLEAR FUEL

  • Goff, K.M.;Wass, J.C.;Marsden, K.C.;Teske, G.M.
    • Nuclear Engineering and Technology
    • /
    • v.43 no.4
    • /
    • pp.335-342
    • /
    • 2011
  • As part of the Department of Energy's Fuel Cycle Research and Development Program an electrochemical technology employing molten salts is being developed for recycle of metallic fast reactor fuel and treatment of light water reactor oxide fuel to produce a feed for fast reactors. This technology has been deployed for treatment of used fuel from the Experimental Breeder Reactor II (EBR-II) in the Fuel Conditioning Facility, located at the Materials and Fuel Complex of Idaho National Laboratory. This process is based on dry (non-aqueous) technologies that have been developed and demonstrated since the 1960s. These technologies offer potential advantages compared to traditional aqueous separations including: compactness, resistance to radiation effects, criticality control benefits, compatibility with advanced fuel types, and ability to produce low purity products. This paper will summarize the status of electrochemical development and demonstration activities with used nuclear fuel, including preparation of associated high-level waste forms.

Changes in Lipid Components of Oleoresin Red Pepper during Cooking (고추 Oleoresin 의 가열조리중 지질성분의 변화)

  • 최옥수;하봉석
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.2
    • /
    • pp.238-243
    • /
    • 1994
  • Changes of lipid components in modified oleoresin during cooking at high temperature were investigated. In preparation of the modified oleoresin, dried red pepper was milled to 100 mesh of size particle and extracted oily compounds by reduced pressure steam distillation . The rest part was reextracted and concentrated and concentrated. The extracts were combined. The same volume of water and 4% of polyglycerol condensed ricinoleate (PGDR) were added to the combined extract, and emulsified to make oleresin red pepper. Non-polar lipid components were quantified 3 times higher in the oleoresin than polar lipid components . The components of non-polar lipd was mainly triglyceride comprising 75.8%. The level of phosphatidyl choline and phosphatidyl ethanolamine were 38.6and 26.1%, respectively. linoleic acid was distinctively abundant (63.1%) and followed by palmitic acid, oleic acid, linolenic acid and stearic acid in the oleoresin. Oxidation of lipid at high temperature was principally affected by temperature rather than oxygen existence . With the result of oxidation , palmitic acid and myristic acid increased, however, oleic acid, linoleic acid, and linolenic acid decreased.

  • PDF

Metal Complexes of Enrofloxacin Part I: Preparation, Spectroscopic, Thermal Analyses Studies and Antimicrobial Evaluation

  • El-Shwiniy, Walaa H.;El-Attar, Mohamed S.;Sadeek, Sadeek A.
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.1
    • /
    • pp.52-62
    • /
    • 2013
  • The interaction of titanium (IV), yttrium (III), zirconium (IV), palladium (II) and cerium (IV) with deprotonated enrofloxacin leads to the formation of the neutral or cationic mononuclear complexes. The isolated solid complexes have been characterized with physicochemical and spectroscopic techniques and thermogravimeteric analyses. The spectroscopic data indicate that the enrofloxacin ligand is on the deprotonated mode acting as bidentate ligand coordinated to the metal ions through the ketone oxygen and a carboxylato oxygen and the metal ions completed the coordination number with water molecules. The thermal decomposition mechanisms proposed for enrofloxacin and their metal complexes were discussed. The activation energies, $E^*$, enthalpies, ${\Delta}H^*$, entropies, ${\Delta}S^*$ and Gibbs free energies, ${\Delta}G^*$, of the thermal decomposition reactions have been derived from thermogravimetric (TG) and differential thermogravimetric (DTG) curves, using Coats-Redfern (CR) and Horowitz-Metzeger (HM) methods. The antimicrobial activity has been evaluated against six different microorganisms.

Diffusional Behaviors of the Fabricated Polymeric Films Containing Various Excipients (다양한 첨가제를 함유하는 고분자 필름의 확산거동)

  • Lee, Beom-Jin;Jung, Hyun;Cui, Jing-Hao;Kim, Soo-Hee
    • Journal of Pharmaceutical Investigation
    • /
    • v.29 no.3
    • /
    • pp.185-191
    • /
    • 1999
  • The polymeric films containing drug and various excipients were fabricated using aqueous-based $Eudragit^{\circledR}$ RS 30D dispersions. The diffusional behaviors and mechanism of the fabricated polymeric film were investigated using Keshary-Chien diffusion cell. The melatonin was used as a model drug. The diffusion behaviors of drug through the fabricated polymeric films were highly dependent on drug concentration in donor part, polymer contents and drug concentration, and the types of plasticizers and solubilizers. The fabricated polymeric films containing excipients and solubilizers could be applied for the controlled release of poorly water-soluble drug and for the preparation of drug-containing latex films for topical or oral drug delivery.

  • PDF

Performance of Membrane Capacitive Deionization Process Using Polyvinylidene Fluoride Heterogeneous Ion Exchange Membranes Part I : Preparation and Characterization of Heterogeneous Ion Exchange Membranes (폴리비닐플루오라이드 불균질 이온교환막을 이용한 막 결합형 축전식탈염공정의 탈염 성능 Part I : 불균질 이온교환막의 제조 및 특성)

  • Park, Cheol Oh;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.27 no.1
    • /
    • pp.84-91
    • /
    • 2017
  • In this study, heterogeneous ion exchange membranes were prepared by mixing cation or anion exchange resins and commercial polyvinylidene fluoride (PVDF) for MCDI process. The mixing ratios of PVDF and ion exchange resins were 1 : 1, 1.4 : 1, 2 : 1, and 3 : 1. We characterized SEM, water content, ion exchange capacity, methanol permeability, and ion conductivity. In the viewpoint of membrane characterization, the blending ratio of 2 : 1 showed the best. For the blending ratio of 2 : 1, heterogeneous cation exchange membrane showed the water content 34%, ion exchange capacity 1.54 meq/g, ion conductivity 0.019 S/cm, and methanol permeability $2.28{\times}10^{-7}{\sim}8.86{\times}10^{-7}cm^2/s$ while In the case of heterogeneous anion exchange membrane, the result showed 37%, 2.18 meq/g, and 0.034 S/cm and $1.46{\times}10^{-7}{\sim}8.66{\times}10^{-7}cm^2/s$.