• Title/Summary/Keyword: Water parameters

Search Result 5,621, Processing Time 0.035 seconds

Analysis of heat and fluid flows in an instant water heater according to design parameters of an electric heat device (전기히터의 설계 변수에 따른 순간온수기 열유동 특성 해석)

  • Hui Sun;Joon Hyun Kim;Jaeyong Sung
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.3
    • /
    • pp.23-32
    • /
    • 2023
  • This study aims to explore the heat transfer and flow phenomena inside an instant water heater and the influence of the design parameters of the water heater on the heating performance was investigated by 3-D numerical simulations considering heat convection. The design parameters are the heating ceramic dimension, the power of the heating device, and the water flow rate. The results show that a reasonable space for the heating device is required to optimize the heating performance. It is desirable to design higher heating device as possible for a given electric power. There exists a critical water flow rate that best meets the heating performance. The change in electric power has no impact on the flow phenomena and heating performance.

Design of a Water Quality Monitoring Network in the Nakdong River using the Genetic Algorithm (유전자 알고리즘을 이용한 낙동강 유역의 수질 측정망 설계에 관한 연구)

  • Park, Su-Young;Wang, Sookyun;Choi, Jung Hyun;Park, Seok Soon
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.697-704
    • /
    • 2007
  • This study proposes an integrated technique of Genetic Algorishim (GA) and Geographic Information System (GIS) for designing the water quality monitoring networks. To develop solution scheme of the integrated system, fitness functions are defined by the linear combination of five criteria which stand for the operation objectives of water quality monitoring stations. The criteria include representativeness of a river system, compliance with water quality standards, supervision of water use, surveillance of pollution sources and examination of water quality changes. The fitness level is obtained through calculations of the fitness functions and input data from GIS. To find the most appropriate parameters for the problems, the sensitivity analysis is performed for four parameters such as number of generations, population sizes, probability of crossover, and probability of mutation. Using the parameters resulted from the sensitivity analysis, the developed system proposed 110 water quality monitoring stations in the Nakdong River. This study demonstrates that the integrated technique of GA and GIS can be utilized as a decision supporting tool in optimized design for a water quality monitoring network.

Investigation of AI-based dual-model strategy for monitoring cyanobacterial blooms from Sentinel-3 in Korean inland waters

  • Hoang Hai Nguyen;Dalgeun Lee;Sunghwa Choi;Daeyun Shin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.168-168
    • /
    • 2023
  • The frequent occurrence of cyanobacterial harmful algal blooms (CHABs) in inland waters under climate change seriously damages the ecosystem and human health and is becoming a big problem in South Korea. Satellite remote sensing is suggested for effective monitoring CHABs at a larger scale of water bodies since the traditional method based on sparse in-situ networks is limited in space. However, utilizing a standalone variable of satellite reflectances in common CHABs dual-models, which relies on both chlorophyll-a (Chl-a) and phycocyanin or cyanobacteria cells (Cyano-cell), is not fully beneficial because their seasonal variation is highly impacted by surrounding meteorological and bio-environmental factors. Along with the development of Artificial Intelligence (AI), monitoring CHABs from space with analyzing the effects of environmental factors is accessible. This study aimed to investigate the potential application of AI in the dual-model strategy (Chl-a and Cyano-cell are output parameters) for monitoring seasonal dynamics of CHABs from satellites over Korean inland waters. The Sentinel-3 satellite was selected in this study due to the variety of spectral bands and its unique band (620 nm), which is sensitive to cyanobacteria. Via the AI-based feature selection, we analyzed the relationships between two output parameters and major parameters (satellite water-leaving reflectances at different spectral bands), together with auxiliary (meteorological and bio-environmental) parameters, to select the most important ones. Several AI models were then employed for modelling Chl-a and Cyano-cell concentration from those selected important parameters. Performance evaluation of the AI models and their comparison to traditional semi-analytical models were conducted to demonstrate whether AI models (using water-leaving reflectances and environmental variables) outperform traditional models (using water-leaving reflectances only) and which AI models are superior for monitoring CHABs from Sentinel-3 satellite over a Korean inland water body.

  • PDF

Calibration and uncertainty analysis of integrated surface-subsurface model using iterative ensemble smoother for regional scale surface water-groundwater interaction modeling

  • Bisrat Ayalew Yifru;Seoro Lee;Woon Ji Park;Kyoung Jae Lim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.287-287
    • /
    • 2023
  • Surface water-groundwater interaction (SWGI) is an important hydrological process that influences both the quantity and quality of water resources. However, regional scale SWGI model calibration and uncertainty analysis have been a challenge because integrated models inherently carry a vast number of parameters, modeling assumptions, and inputs, potentially leaving little time and budget to explore questions related to model performance and forecasting. In this study, we have proposed the application of iterative ensemble smoother (IES) for uncertainty analysis and calibration of the widely used integrated surface-subsurface model, SWAT-MODFLOW. SWAT-MODFLOW integrates Soil and Water Assessment Tool (SWAT) and a three-dimensional finite difference model (MODFLOW). The model was calibrated using a parameter estimation tool (PEST). The major advantage of the employed IES is that the number of model runs required for the calibration of an ensemble is independent of the number of adjustable parameters. The pilot point approach was followed to calibrate the aquifer parameters, namely hydraulic conductivity, specific storage, and specific yield. The parameter estimation process for the SWAT model focused primarily on surface-related parameters. The uncertainties both in the streamflow and groundwater level were assessed. The work presented provides valuable insights for future endeavors in coupled surface-subsurface modeling, data collection, model development, and informed decision-making.

  • PDF

A study on Parameters of Linear reservoir models (선형저수지 모형의 매개변수연구)

  • 고재웅;서영제
    • Water for future
    • /
    • v.20 no.3
    • /
    • pp.229-235
    • /
    • 1987
  • The purpose of this study is to estimate the parameters of linear reservoir models in order to derive the Instantaneous unit hydrograph from a given small experimental watershed. The linear reservoir model is a conceptual model, consisting of cascade or parallel equal linear reservoirs, preceded by a linear channel which involved Nash, SLR(single linear reservoir) and 2-PLR(two-parallel linear Reservoir) model. the Nash model have two parameters N and K, single linear reseroir has one parameter $K_I$ and two-parallel linear reservoirs have two parameters $K_1,\;K_2$; where N denote the number of reservoirs and K is the storage coefficient of each reservoirs.

  • PDF

Analysis of Water Quality Variation after Hydraulic Changes in Yeongsan River (수리 변동에 따른 영산강에서의 수질 변화 분석 연구)

  • Kim, Yu-Heun;Lee, Hye-Won;Choi, Jung-Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • The Yeongsan River, one of the four major rivers in Korea, shows the highest degree of water pollution compared to the other major rivers. The construction and opening of two weirs, Seungchon and Juksan, induced fluctuations in the hydrologic conditions and water quality of the river. To investigate the water quality changes caused by the opening of the weir in 2017, this study analyzed the water quality data using the non-parametric Wilcoxon signed-rank test and the three-dimensional spatiotemporal plots. The non-parametric statistical test results showed that the concentration of all parameters has increased after 2017 at a significance level of 0.05. For the parameters that showed the highest degree of change, chlorophyll-a and suspended solids, the median values have increased by more than 30% after weir opening. Visual analysis additionally showed the spatial changes in the Yeongsan River. Generally, the sites above the Seungchon weir showed higher pollution levels than those above the Juksan weir. In time series, visual analysis results also showed the trend of rising concentration for all water quality parameters, indicating that the opening of two weirs had a significant effect on the change in water quality of the Yeongsan River.

A Modification of Water Table Fluctuation Model Considering Delayed Drainage Effect of Unsaturated Zone (비포화대 지연배수 효과를 고려한 지하수위 변동모델의 개선 및 적용)

  • Kim, Seong-Han;Park, Eun-Gyu;Kim, Yong-Sung;Kim, Nam-Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.3
    • /
    • pp.17-27
    • /
    • 2011
  • Recently, a physically based model of water-table fluctuation due to precipitation is developed based on aquifer water balance model. In the model, it was assumed that the water infiltration into ground surface is advection dominant and immediately reaches to water-table. The assumption may be suited for the sites where the water-table is shallow and/or the permeability of the unsaturated zone is high. However, there are more cases where the model is not directly applicable due to thick and low permeable unsaturated zone. For the low permeability unsaturated zone, the pattern of water flux passing through unsaturated zone is diffusive as well as advective. In this study, to improve the previously developed water-table fluctuation model, we combined the delayed drainage model, which has long been used in well hydraulics, to the water-table fluctuation model. To test the validity of the development, we apply the developed model to 5 different domestic sites. The model parameters are calibrated based on the groundwater hydrograph and the precipitation time series, and the correlation analyses among the parameters are pursued. The overall analyses on the delineated model parameters indicate that the delayed drainage parameters or delay index used in the developed model are able to reveal drainage information in the unsaturated zones.

The Research about the Water Quality Prediction at Imha Reservoir Using a WASP7 Model (WASP7 모형을 이용한 임하호 수질모의에 관한 연구)

  • Ahn, Seung-Seop;Seo, Myung-Joon;Jung, Do-Joon;Park, Ro-Sam
    • Journal of Environmental Science International
    • /
    • v.17 no.6
    • /
    • pp.611-621
    • /
    • 2008
  • This study intends to provide the necessary basic data needed for predicting the water quality and examining changes in water quality on the basis of the hydrological changes: an outflow or the character of a flow by investigating the interaction of the parameters through the estimation of optimal parameters need for predicting the water quality of the dam basin and the sensitivity among those estimated parameters. Im-Ha Dam in the upstream area of the Nakdong River was selected for analysis, and the water quality survey data necessary for parameter estimation was based on the monthly water quality data (water temperature, BOD, T-N and T-P) between December 1, $2005{\sim}$November 31, 2006. K1C(the saturated growth rate of plant plankton), K1RC (endogenous respiratory quotient of plankton), KDC(deoxidized ratio), K71C(minealized ratio of dissolved organic phosphorus), K83C(mineralized ratio of dissolved organic nitrogen) have been considered as the factors of the water quality performed in this water quality simulation, that is, the most effective parameters on BOD, T-N and T-P. In the result of the analysis of the sensitivity, KDC(deoxidized ratio) was the most sensitively reacted parameter on BOD and it was K71C(mineralized ratio of dissolved organic phosphorus) and K83C(mineralized ratio of dissolved organic nitrogen) on T-N and T-P. It is considered that it will be possible to apply the most optimal parameter to an analysis of the water quality simulation at Im-Ha Ho basin in the goal year by examining the interaction of the parameters through the parameters sampling which are able to applicable to prediction of the water quality and the analysis of the its sensitivity, in the future, also the analysis on the basis of the hydrological conditions: an outflow or the character of a flow will be needed.

Variations of Disinfection By-products in a Chlorinated Drinking Water Distribution System

  • Lee, Soo-Hyung;Park, Jeong-Kun;Lee, Hyung-Jun;Kim, He-Kap
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.2
    • /
    • pp.71-78
    • /
    • 2000
  • The chlorination of municipal drinking water supplies leads to the formation of so-called disinfection by-products(DBPs), many of which have been reported to cause harmful health effects based on animal studies. This study was conducted: 1) to observe seasonal changes in the major DBPs at four sampling sites on a drinking water distribution system located in Chunchon, Kangwon Do; and 2) to examine the effects of major water quality parameters on the formation of DBPs. During the field sampling, the water temperature, pH, and total and free chlorine residuals were all measured. The water samples were then analyzed for total organic carbon(TOC) and eight disinfection by-products in the laboratory. Chloroform, dichloroacetic acid, and trichloroacetic acid were the major constituents of the measured DBPs. The concentrations of the total DBPs were highest in fall, particularly in October, and lowest in summer. The concentrations of the total DBPs increased with increasing TOC concentrations. Multiple regression analyses showed that the concentrations of chloroform, bromodichloromethane, and chloral hydrate were linearly correlated with the pH. Other water parameters were not included in the regression equations. Accordingly, these results suggest that TOC and pH are both important factors in the formation of DBPs.

  • PDF

Structural modeling of actuation of IPMC in dry environment: effect of water content and activity

  • Swarrup, J. Sakthi;Ranjan, Ganguli;Giridhar, Madras
    • Smart Structures and Systems
    • /
    • v.19 no.5
    • /
    • pp.553-565
    • /
    • 2017
  • Structural modeling of unencapsulated ionic polymer metal composite (u-IPMC) actuators that are used for flapping the insect scale-flapping wing of micro air vehicles (FMAV) in dry environmental conditions is carried out. Structural modeling for optimization of design parameters for retention of water, maximize actuation performance and to study the influence of water activity on the actuation characteristics of u-IPMC is explored for use in FMAV. The influence of equivalent weight of Nafion polymer, cations, concentration of cations, pre-treatment procedures on retention of water of u-IPMCs and on actuation parameters, flapping angle, flexural stiffness and actuation displacement are investigated. IPMC designed with Nafion having equivalent weight 900-1100, pre-heated at $30^{\circ}C$ and with sodium as the cations is promising for optimum retention of water and actuation performance. The actuation parameters while in operation in dry and humid environment with varying water activity can be tuned to desirable frequency, deflection, flap angle and flexural stiffness by changing the water activity and operational temperature of the environment.