• Title/Summary/Keyword: Water on deck

Search Result 120, Processing Time 0.029 seconds

Experimental and Numerical Study on the Effects of Bow Deck Shape on the Green Water (선수갑판형상이 갑판침입수에 미치는 영향에 관한 실험 및 수치적 연구)

  • Jeong, Kwang-Leol;Lee, Young-Gill;Ha, Yoon-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.5
    • /
    • pp.273-281
    • /
    • 2013
  • In this paper, the effects of bow deck shape on the green water are studied by numerical and experimental method. Varying the deck shapes to triangular, elliptic and circular, the thickness and advancing velocity of green water leading edge are compared using numerical method. Also the motion, the pressure on the vertical wall and the height on the deck of green water are compared among the three bow deck shapes in the heave and pitch motion free condition by experimental method. To remove the effects of the difference of motions among the deck shapes, numerical simulations are performed varying the deck shape with the same motion. In the same motion condition, smallest impulsive pressure occurred in the condition of elliptic deck shape.

Numerical Calculation and Experiment of Green Water on the Bow Deck in Regular Waves (규칙파 중 선수갑판 Green Water에 대한 수치계산 및 실험)

  • Kim, Yong-Jig;Shin, Ki-Seok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.4 s.142
    • /
    • pp.350-356
    • /
    • 2005
  • Prediction of green water loads acting on the bow deck is au essential part for the design of bow structures against the green water impact. Proper technique of the green water simulation is highly required for the prediction of green water loads. in this paper, the green water flow on bow deck is simulated by FDM(finite difference method). Using the results of green water simulation, impact load on bow deck is calculated. Also, experiments are carried out to compare with the numerical calculation. Through the comparisons between experimental results and numerical results, it is verified that the present numerical tool is adequate as a practical calculation tool for the green water problem.

A Development of the Trapped Water Drainage System to Prevent the Deterioration of Deck Slab and Pavement. (교면 포장 및 바닥판 손상 방지를 위한 내부 침투수 처리시스템 개발)

  • 조서연;한범성;이상달;이성수;이상순;이일용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1175-1180
    • /
    • 2001
  • Reinforced concrete deck slabs are directly affected by traffic loads and they are also susceptible to weather-related problems, such as cracking, reinforcement corrosion, spatting, scaling, delamination, leakage, efflorescence and so on. Some of these defects are caused by water which seeps through pavements and trapped between pavements and deck slabs. For durability of reinforced concrete deck slabs and pavements, it is very important to protect deck slabs and drain the trapped water out. To develop the trapped water drainage system, the following studies have been performed in Korea Highway Cooperation: related researches are reviewed; for six bridges, deck slabs are thoroughly investigated; new system to effectively drain the trapped water out is proposed; the proposed system is installed and evaluated. The proposed system is proved to be effective to drain the trapped water out and is expected to increase the durability of reinforced concrete deck slabs.

  • PDF

Computation of the Bow Deck Design Pressure against the Green Water Impact (Green Water 충격에 대비한 선수갑판 설계압력의 산출)

  • Kim, Yong Jig;Shin, Ki-Seok;Lee, Seung-Chul;Ha, Youngrok;Hong, Sa Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.4
    • /
    • pp.343-351
    • /
    • 2019
  • Green water impact may sometimes cause some structure damages on ship's bow deck. Prediction of proper design pressure against the green water impact is an essential task to prevent the possible damages on bow deck. This paper presents a computational method of the bow deck's design pressure against the green water impact. Large heave and pitch motions of ship are calculated by the time domain nonlinear strip method. Green water flow and pressure on bow deck are simulated by the predictor-corrector second kind upstream finite difference method. This green water simulation method is based on the shallow water wave equations expanded for moving bottom conditions. For various kind of ships such as container ship, VLCC, oil tanker and bulk carrier, the green water design pressures on bow deck are computed and discussed. Also, the obtained results of design pressure on bow deck are compared with those of the classification society rules and discussed.

A comparison study on the deck house shape of high speed planing crafts for air resistance reduction

  • Park, Chung-Hwan;Park, Hee-Seung;Jang, Ho-Yun;Im, Namkyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.867-875
    • /
    • 2014
  • Planing crafts were specifically designed to achieve relatively high speeds on the water. When a planing craft is running at high speed, dynamic pressure on the bottom makes the boat rise on the surface of the water. This reduces the area of the sinking surface of the boat to increase air resistance. Air resistance means the resistance that occurs when the hull and deck house over the surface of the water come in contact with the air current. In this paper, we carried out a CFD numerical analysis to find optimal deck houses that decreased air-resistance on the water when planing crafts are running at high speed. We finally developed the deck house shape of high-speed planing crafts that optimally decreased air resistance.

A Development of the Trapped Water Drainage System to Prevent the Deterioration of Deck Slab and Pavement (교면포장 및 바닥판 손상방지를 위한 내부침투수 처리시스템 개발)

  • Lee, Sang-Dal;Lee, Sang-Soon;Shin, Jae-In;Seo, Sang-Gul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.233-239
    • /
    • 2002
  • Reinforced concrete deck slabs are directly affected by traffic loads and they are also susceptible to weather-related problems, such as cracking, reinforcement corrosion, spatting, scaling, delamination, leakage, efflorescence and so on. Some of these defects are caused by water which seeps through pavements and trapped between pavements and deck slabs. For durability of reinforced concrete deck slabs and pavements, it is very important to protect deck slabs and drain the trapped water out. To develop the trapped water drainage system, the following studies have been performed in Korea Highway Cooperation: related researches a re reviewed; for six bridges, deck slabs are thoroughly investigated; new system to effectively drain the trapped water out is proposed; the proposed system is installed and evaluated. The proposed system is proved to be effective to drain the trapped water out and is expected to increase the durability of reinforced concrete deck slabs.

Numerical Simulation of Two-Dimensional Shipping Water by Using a Simplified Model (단순화 모델에 의한 2차원 갑판침입수의 수치 시뮬레이션)

  • Kim, Yong J.;Kim, In C.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.2
    • /
    • pp.1-12
    • /
    • 1996
  • Hydrodynamic characteristics of shipping water on deck are investigated by using a simplified two-dimensional model. Formulation of the shipping water on deck leads to a nonlinear hyperbolic system of equations based on the shallow-water wave theory. Time-domain solution of these equations are obtained numerically using a finite difference method which adopts predictor-corrector method for time-marching and 2nd upwind differencing method for convection term calculation. To confirm the validity of the present numerical method, we calculated some shallow-water wave problems accompanying a bore and compared the obtained results with the analytic solutions. We found good agreements between them. Though the calculation results of shipping water on deck, we show that the shipping water flows into the deck as a rarefying wave arid grows into a bore after colliding with a deck structure. Also we examined the effects of acceleration and slope of deck and found that they have significant influences on the flow of shipping water.

  • PDF

Validation of time domain seakeeping codes for a destroyer hull form operating in steep stern-quartering seas

  • Van Walree, Frans;Carette, Nicolas F.A.J.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.1
    • /
    • pp.9-19
    • /
    • 2011
  • The paper describes the validation of two time domain methods to simulate the behaviour of a destroyer operating in steep, stern-quartering seas. The significance of deck-edge immersion and water on deck on the capsize risk is shown as well as the necessity to account for the wave disturbances caused by the ship. A method is described to reconstruct experimental wave trains and finally two deterministic validation cases are shown.

An Experimental Analysis of the Impact of Green Water on Offshore Platforms with Green Water Protectors of Various Shapes

  • Lee, DongHyun;Jeon, MyungJun;Nguyen, Van Minh;Yoon, Hyeon Kyu
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.3
    • /
    • pp.136-149
    • /
    • 2016
  • Green water impact occurs frequently on offshore platform due to waves with a height greater relative to the freeboard of the structure. This phenomenon exerts a large impact load on the deck. In this paper, offshore platform models with green water protectors of various shapes were fixed to the center of a 3D wave tank to measure the impact pressure acting on the various points on deck and protectors. The impact pressure distribution differed depending on the protector shape, and various patterns of wave creeping up the protector were observed. The protector shape that exerted the lowest pressure impact on the deck will be useful in the deck design of offshore platform, and the model test results will be expected to be used for designers to select the best protector form.

Numerical Computations of Impact Forces Acting on Breakwater Plate of Bow Deck of Container Carrier (전산유체역학을 이용한 컨테이너 선수갑판 쇄파판에 작용하는 충격하중 계산)

  • Lee, Seohyun;Lew, Jaemoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.3
    • /
    • pp.198-205
    • /
    • 2015
  • In this study, numerical studies using a Computational Fluid Dynamics(CFD) method were carried out to estimate the green water load acting on the breakwater plate of bow deck of container carrier, KCS. For the green load water load analysis, a full load condition was considered. The relative motions at bow deck were calculated from the seakeepig analysis. Statistical analysis were carried out to estimate the long term response of the relative motions with the North Atlantic wave scatter diagram. The equivalent design wave was determined from the RAO of the relative motions at bow and the long term responses. CFD geometry modeling with three different locations and simulations for the green water loads were carried out in the equivalent design waves. A commercial CFD program, STAR-CCM+ Ver. 8.04, was used and the green water pressures on the breakwater plate were calculated successfully. The CFD analysis for green water loads can be used as a useful design tool for the evaluation of the breakwater plate of the container vessel.