• Title/Summary/Keyword: Water microbiology

Search Result 1,327, Processing Time 0.038 seconds

Studies on Reaction Parameters for Composting of Paper Mill Sludge in a Small-Scale Reactor and Static Piles (제지슬럿지의 퇴비화를 위한 반응변수 연구)

  • Han, Shin Ho;Chung, Young Ryun;Cho, Cheon Hee;Kang, Moon Hee;Oh, Say Kyun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.2 no.2
    • /
    • pp.19-29
    • /
    • 1994
  • A large volume of paper mill sludge(PMS) is produced every day from paper industries after treatments of waste water and it costs too much to dispose of the sludge. Since PMS consists mostly of biodegradable organic matter, cellulose, it is desirable to recycle it by proper treatments such as composting. In this study, experiments were conducted using a small scale reactor(12l) to establish optimum conditions for efficient composting of PMS of which initial pH, C/N ratio, and moisture content were 7.1, 28~30, and 60~65%, respectively. No heavy metals such as mercury, cadmimum, and lead were not detected in the PMS. Various levels of forced aeration, 1 minute aeration per every 30, 60, 120, 240, and 480 minutes were applied and 1 minute aeration per 60 and 120 minutes found to be proper for composting of 8l PMS in this system. Relationship between $CO_2$ production and temperatures was positively correlated with r> 0.82 suggesting that the normal decomposition of PMS by microorganisms occurred. However, under the condition of aeration interval over than 240 minutes, a negative relationship between two parameters was found indicating the occurrence of abnormal(maybe anaerobic) degradation. The amount of added nitrogen also affected composting of PMS resulting in the increase of $CO_2$ production and temperature. Semi-field tests using 100kg PMS in a static pile sysem showed that PMS could be composted efficiently under optimal environmental conditions. The parameters determining efficiency of composting such as C/N ratio, aeration, moisture content, and pH need to be monitored.

  • PDF

Study on the Anti-HT-29 Human Colon Cancer Activity of $\beta$-Glucans and Their Enzymatically Hydrolyzed Oligosaccharides from Agalicus blazei Murill (아가리쿠스로부터 분리한 $\beta$-glucan과 그 올리고당류의 HT-29 인체 대장암 세포에 대한 항암 활성에 관한 연구)

  • Lee, Mi-Young;Kim, Ki-Hoon;Kim, Yea-Woon;Chang, Hun-Gil;Lee, Dong-Seok
    • Korean Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.319-325
    • /
    • 2006
  • [ $\beta$ ]-Glucans (AG) were prepared from Agaricus blazei cultured in the medium fortified with the roots of Pueraria spp. by repeated extraction with hot water, gel filtration chromatography and DEAE ion exchange chromatography. Oligosaccharides (AO) were derived from the hydrolysis of AG by an endo-$\beta$-(1$\rightarrow$6)-glucanase from Bacillus megaterium. The anti-HT-29 human colon cancer activity of AG or AO was investigated using MTT assay, apoptosis assay, cell cycle analysis, and cDNA microairay. AG and AO both inhibited proliferation and growth of HT-29 cells, and stimulated apoptosis of the cells in a dose-dependent manner. In cell cycle analysis, treating HT-29 cells with AG or AO resulted in the increase of cells in the G0 (sub-G1) and G1 phase. Especially, AO was more effective in inducing G0/G1 cell cycle arrest than AG. To screen the genes involved in the increase of apoptosis, the gene expression profile of the HT-29 cells treated with AO was examined by cDNA microarray. While several genes involved in cell cycle progression (CCND2 and CDK2) were down-regulated, many genes involved in apoptosis (TNFSF9, TNFRSF9, FADD, CASP8, BAD, CRADD, CASP9 etc), cell cycle inhibitor (CDKN2A), immune response (IL6, IL18, IL6R etc), and tumor suppressor (CEACAM1, TP53BP2, IRF1, and PHB) were up-regulated. These results suggest that AO could inhibit the proliferation and growth of HT-29 cells by G0/G1 cell cycle arrest and induction of apoptosis.

Assessment of Bio-corrosive Effect and Determination of Controlling Targets among Microflora for Application of Multi-functional CFB on Cement Structure (다기능 탄산칼슘 형성세균의 시멘트 건축물 적용위한 부식능 평가 및 건축물 정주미생물 중 방제 대상 결정)

  • Park, Jong-Myong;Park, Sung-Jin;Ghim, Sa-Youl
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.237-242
    • /
    • 2015
  • The use of calcite-forming bacteria (CFB) in crack remediation and durability improvements in construction materials creates a permanent and environmentally-friendly material. Therefore, research into this type of application is stimulating interdisciplinary studies between microbiology and architectural engineering. However, the mechanisms giving rise to these materials are dependent on calcite precipitation by the metabolism of the CFB, which raises concerns about possible hazards to cement-based construction due to microbial metabolic acid production. The aim of this study was to determine target microorganisms that possibly can have bio-corrosive effects on cement mortar and to assess multi-functional CFBs for their safe application to cement structures. The chalky test was first used to evaluate the $CaCO_3$ solubilization feature of construction sites by fungi, yeast, bacterial strains. Not all bacterial strains are able to solubilize $CaCO_3$, but C. sphaerospermum KNUC253 or P. prolifica KNUC263 showed $CaCO_3$ solubilization activity. Therefore, these two strains were identified as target microorganisms that require control in cement structures. The registered patented strains Bacillus aryabhatti KNUC205, Arthrobacter nicotianae KNUC2100, B. thuringiensis KNUC2103 and Stenotrophomonas maltophilia KNUC2106, reported as multifunctional CFB (fungal growth inhibition, crack remediation, and water permeability reduction of cement surfaces) and isolated from Dokdo or construction site were unable to solubilize $CaCO_3$. Notably, B. aryabhatti KNUC205 and A. nicotianae KNUC2100 could not hydrolyze cellulose or protein, which can be the major constituent macromolecules of internal materials for buildings. These results show that several reported multi-functional CFB can be applied to cement structures or diverse building environments without corrosive or bio-deteriorative risks.

Separation of Reducing Sugars from Rape Stalk by Acid Hydrolysis and Fabrication of Fuel Pellets from its Residues (산가수분해한 유채대로부터 유리당의 분리 및 이의 잔사로부터 펠릿의 제조)

  • Yang, In;Ahn, Byoung Jun;Kim, Myeong-Yong;Oh, Sei Chang;Ahn, Sye Hee;Choi, In-Gyu;Kim, Yong-Hyun;Han, Gyu-Seong
    • Korean Journal of Plant Resources
    • /
    • v.27 no.1
    • /
    • pp.60-71
    • /
    • 2014
  • This study was conducted to identify the potential of rape stalk as a raw material for biorefinery process of rape flower. At first, rape stalk (RS) was immersed in distilled water (DW), acetic acid (AA), oxalic acid (OA), sulfuric acid (SA) and sodium hydroxide (SH) solutions, and the content of reducing sugars liberated from immersed RS was analyzed. Glucose, xylose, arabinose and sucrose were detected varying with the immersion type. In particular, 1% AA-immersion of RS for 72 hr was the most effective conditions to liberate glucose from RS. Secondly, the RS residues were used for elementary analysis and fabrication of fuel pellets. In addition to the solution type, concentration of immersion solutions (0%, 1%, 2%) and immersion time (24, 72, 120 hr) were used as experimental factors. The contents of nitrogen, sulfur and chlorine reduced effectively through the immersion of RS in DW, AA and OA solutions. For properties of RS-based pellets, bulk density and higher heating value of RS-based pellets greatly increased with the immersion of RS, and the qualities were much higher than those of the A-grade pellet of the EN standards. Ash content decreased remarkably through the immersion of RS, and was satisfied with the A-grade pellet standard. Durability was negatively affected by the immersion of RS, and did not reached to B-grade of the EN standard. In conclusion, acid immersion of RS can be a pretreatment method for the production of fuel pellet and bioethanol, but use of the immersed RS for the production of high-quality pellets might be restricted due to low durability of immersed-RS pellets. Therefore, further studies, such as investigation of detailed immersion conditions, fabrication of mixed pellets with wooden materials and addition of binders, are needed to resolve the problems.

Efficient Remediation of Petroleum Hydrocarbon-Contaminated Soils through Sequential Fenton Oxidation and Biological Treatment Processes (펜톤산화 및 생물학적 연속처리를 통한 유류오염토양의 효율적 처리)

  • Bae, Jae-Sang;Kim, Jong-Hyang;Choi, Jung-Hye;Ekpeghere, Kalu I.;Kim, Soo-Gon;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.47 no.4
    • /
    • pp.356-363
    • /
    • 2011
  • The accidental releases of total petroleum hydrocarbons (TPH) due to oil spills frequently ended up with soil and ground water pollution. TPH may be degraded through physicochemical and biological processes in the environment but with relatively slow rates. In this study an attempt has been made to develop an integrated chemical and biological treatment technology in order to establish an efficient and environment-friendly restoration technology for the TPH contaminated soils. A Fenton-like reaction was employed as a preceding chemical treatment process and a bioaugmentation process utilizing a diesel fuel degrader consortium was subsequently applied as a biological treatment process. An efficient chemical removal of TPH from soils occurred when the surfactant OP-10S (0.05%) and oxidants ($FeSO_4$ 4%, and $H_2O_2$ 5%) were used. Bioaugmentation of the degrader consortium into the soil slurry led to an increase in their population density at least two orders of magnitude, indicating a good survival of the degradative populations in the contaminated soils ($10^8-10^9$ CFU/g slurry). TPH removal efficiencies for the Fenton-treated soils increased by at least 57% when the soils were subjected to bioaugmentation of the degradative consortium. However, relatively lower TPH treatment efficiencies (79-83%) have been observed in the soils treated with Fenton and the degraders as opposed to the control (95%) that was left with no treatment. This appeared to be due to the presence of free radicals and other oxidative products generated during the Fenton treatment which might inhibit their degradation activity. The findings in this study will contribute to development of efficient bioremediation treatment technologies for TPH-contaminated soils and sediments in the environment.

Characterization of an Antarctic alkaline protease, a cold-active enzyme for laundry detergents (세탁세제 첨가용 효소 개발을 위한 남극 해양세균 유래 저온성 단백질분해효소의 특성 연구)

  • Park, Ha Ju;Han, Se Jong;Yim, Joung Han;Kim, Dockyu
    • Korean Journal of Microbiology
    • /
    • v.54 no.1
    • /
    • pp.60-68
    • /
    • 2018
  • A cold-active and alkaline serine protease (Pro21717) was partially purified from the Antarctic marine bacterium Pseudoalteromonas arctica PAMC 21717. On a zymogram gel containing skim milk, Pro21717 produced two distinct clear-zones of approximately 37 kDa (low intensity) and 74 kDa (high intensity). These were found to have identical N-terminal sequences, suggesting they arose from an identical precursor and that the 37 kDa protease might homodimerize to the more active 74 kDa form of the protein. Pro21717 displayed proteolytic activity at $0-40^{\circ}C$ (optimal temperature of $40^{\circ}C$) and maintained this activity at pH 5.0-10.0 (optimal pH of 9.0). Notably, relative activities of 30% and 45% were observed at $0^{\circ}C$ and $10^{\circ}C$, respectively, in comparison to the 100% activity observed at $40^{\circ}C$, and this enzyme showed a broad substrate range against synthetic peptides with a preference for proline in the cleavage reaction. Pro21717 activity was enhanced by $Cu^{2+}$ and remained stable in the presence of detergent surfactants (linear alkylbenzene sulfonate and sodium dodecyl sulfate) and other chemical components ($Na_2SO_4$ and metal ions, such as $Ba^{2+}$, $Mg^{2+}$, $Ca^{2+}$, $Zn^{2+}$, $Fe^{2+}$, $K^+$, and $Na^{2+}$), which are often included in commercial detergent formulations. These data indicate that the psychrophilic Pro21717 has properties comparable to the well-characterized mesophilic subtilisin Carlsberg, which is commercially produced by Novozymes as the trademark Alcalase. Thus it has the potential to be used as a new additive enzyme in laundry detergents that must work well in cold tap water below $15^{\circ}C$.

Pharmacological Studies of Cefoperazone(T-1551) (Cefoperazone(T-1551)의 약리학적 연구)

  • Lim J.K.;Hong S.A.;Park C.W.;Kim M.S.;Suh Y.H.;Shin S.G.;Kim Y.S.;Kim H.W.;Lee J.S.;Chang K.C.;Lee S.K.;Chang K.C.;Kim I.S.
    • The Korean Journal of Pharmacology
    • /
    • v.16 no.2 s.27
    • /
    • pp.55-70
    • /
    • 1980
  • The pharmacological and microbiological studies of Cefoperazone (T-1551, Toyama Chemical Co., Japan) were conducted in vitro and in vivo. The studies included stability and physicochemical characteristics, antimicrobial activity, animal and human pharmacokinetics, animal pharmacodynamics and safety evaluation of Cefoperazone sodium for injection. 1) Stability and physicochemical characteristics. Sodium salt of cefoperazone for injection had a general appearance of white crystalline powder which contained 0.5% water, and of which melting point was $187.2^{\circ}C$. The pH's of 10% and 25% aqueous solutions were 5.03 ana 5.16 at $25^{\circ}C$. The preparations of cefoperazone did not contain any pyrogenic substances and did not liberate histamine in cats. The drug was highly compatible with common infusion solutions including 5% Dextrose solution and no significant potency decrease was observed in 5 hours after mixing. Powdered cefoperazone sodium contained in hermetically sealed and ligt-shielded container was highly stable at $4^circ}C{\sim}37^{\circ}C$ for 12 weeks. When stored at $4^{\circ}C$ the potency was retained almost completely for up to one year. 2) Antimicrobial activity against clinical isolates. Among the 230 clinical isolates included, Salmonella typhi was the most susceptible to cefoperazone, with 100% inhibition at MIC of ${\leq}0.5{\mu}g/ml$. Cefoperazone was also highly active against Streptococcus pyogenes(group A), Kletsiella pneumoniae, Staphylococcus aureus and Shigella flexneri, with 100% inhibition at $16{\mu}g/ml$ or less. More than 80% of Escherichia coli, Enterobacter aerogenes and Salmonella paratyphi was inhibited at ${\leq}16{\mu}/ml$, while Enterobacter cloaceae, Serratia marcescens and Pseudomonas aerogenosa were somewhat less sensitive to cefoperagone, with inhibitions of 60%, 55% and 35% respectively at the same MIC. 3) Animal pharmacokinetics Serum concentration, organ distritution and excretion of cefoperazone in rats were observed after single intramuscular injections at doses of 20 mg/kg and 50 mg/kg. The extent of protein binding to human plasma protein was also measured in vitro br equilibrium dialysis method. The mean Peak serum concentrations of $7.4{\mu}g/ml$ and $16.4{\mu}/ml$ were obtained at 30 min. after administration of cefoperazone at doses of 20 mg/kg and 50 mg/kg respectively. The tissue concentrations of cefoperazone measured at 30 and 60 min. were highest in kidney. And the concentrations of the drug in kidney, liver and small intestine were much higher than in blood. Urinary and fecal excretion over 24 hours after injetcion ranged form 12.5% to 15.0% in urine and from 19.6% to 25.0% in feces, indicating that the gastrointestinal system is more important than renal system for the excretion of cefoperazone. The extent of binding to human plasma protein measured by equilibrium dialysis was $76.3%{\sim}76.9%$, which was somewhat lower than the others utilizing centrifugal ultrafiltration method. 4) Animal pharmacodynamics Central nervous system : Effects of cefoperazone on the spontaneous movement and general behavioral patterns of rats, the pentobarbital sleeping time in mice and the body temperature in rabbits were observed. Single intraperitoneal injections at doses of $500{\sim}2,000mg/kg$ in rats did not affect the spontaneous movement ana the general behavioral patterns of the animal. Doses of $125{\sim}500mg/kg$ of cefoperazone injected intraperitonealy in mice neither increased nor decreased the pentobarbital-induced sleeping time. In rabbits the normal body temperature was maintained following the single intravenous injections of $125{\sim}2,000mg/kg$ dose. Respiratory and circulatory system: Respiration rate, blood pressure, heart rate and ECG of anesthetized rabbits were monitored for 3 hours following single intravenous injections of cefoperazone at doses of $125{\sim}2,000mg/kg$. The respiration rate decreased by $3{\sim}l7%$ at all the doses of cefoperazone administered. Blood pressure did not show any changes but slight decrease from 130/113 to 125/107 by the highest dose(2,000 mg/kg) injected in this experiment. The dosages of 1,000 and 2,000 mg/kg seemed to slightly decrease the heart rate, but it was not significantly different from the normal control. All the doses of cefoperazone injected were not associated with any abnormal changes in ECG findings throughout the monitering period. Autonomic nervous system and smooth muscle: Effects of cefoperazone on the automatic movement of rabbit isolated small intestine, large intestine, stomach and uterus were observed in vitro. The autonomic movement and tonus of intestinal smooth muscle increased at dose of $40{\mu}g/ml$ in small intestine and at 0.4 mg/ml in large intestine. However, in stomach and uterine smooth muscle the autonomic movement was slightly increased by the much higher doses of 5-10 mg/ml. Blood: In vitro osmotic fragility of rabbit RBC suspension was not affected by cefoperazone of $1{\sim}10mg/ml$. Doses of 7.5 and 10 mg/ml were associated with 11.8% and 15.3% prolongation of whole blood coagulation time. Liver and kidney function: When measured at 3 hours after single intravenous injections of cefoperaonze in rabbits, the values of serum GOT, GPT, Bilirubin, TTT, BUN and creatine were not significantly different from the normal control. 5) Safety evaluation Acute toxicity: The acute toxicity of cefoperazone was studied following intraperitoneal and intravenous injections to mice(A strain, 4 week old) and rats(Sprague-Dawler, 6 week old). The LD_(50)'s of intraperitonealy injected cefoperazone were 9.7g/kg in male mice, 9.6g/kg in female mice and over 15g/kg in both male and female rats. And when administered intravenously in rats, LD_(50)'s were 5.1g/kg in male and 5.0g/kg in female. Administrations of the high doses of the drug were associated with slight inhibition of spontaneous movement and convulsion. Atdominal transudate and intestinal hyperemia were observed in animals administered intraperitonealy. In rats receiving high doses of the drug intravenously rhinorrhea and pulmonary congestion and edema were also observed. Renal proximal tubular epithelial degeneration was found in animals dosing in high concentrations of cefoperazone. Subacute toxicity: Rats(Sprague-Dawley, 6 week old) dosing 0.5, 1.0 and 2.0 g/kg/day of cefoperazone intraperitonealy were observed for one month and sacrificed at 24 hours after the last dose. In animals with a high dose, slight inhibition of spontaneous movement was observed during the experimental period. Soft stool or diarrhea appeared at first or second week of the administration in rats receiving 2.0g/kg. Daily food consumption and weekly weight gain were similar to control during the administration. Urinalysis, blood chemistry and hematology after one month administration were not different from control either. Cecal enlargement, which is an expected effect of broad spectrum antibiotic altering the normal intestinal microbial flora, was observed. Intestinal or peritoneal congestion and peritonitis were found. These findings seemed to be attributed to the local irritation following prolonged intraperitoneal injections of hypertonic and acidic cefoperazone solution. Among the histopathologic findings renal proximal tubular epithelial degeneration was characteristic in rats receiving 1 and 2g/kg/day, which were 10 and 20 times higher than the maximal clinical dose (100 mg/kg) of the drug. 6) Human pharmacokinetics Serum concentrations and urinary excretion were determined following a single intravenous injection of 1g cefoperazone in eight healthy, male volunteers. Mean serum concentrations of 89.3, 61.3, 26.6, 12.3, 2.3, and $1.8{\mu}g/ml$ occured at 1,2,4,6,8 and 12 hours after injection respectively, and the biological half-life was 108 minutes. Urinary excretion over 24 hours after injection was up to 43.5% of administered dose.

  • PDF