• Title/Summary/Keyword: Water level variability prediction

Search Result 6, Processing Time 0.023 seconds

Estimation of the allowable range of prediction errors to determine the adequacy of groundwater level simulation results by an artificial intelligence model (인공지능 모델에 의한 지하수위 모의결과의 적절성 판단을 위한 허용가능한 예측오차 범위의 추정)

  • Shin, Mun-Ju;Moon, Soo-Hyoung;Moon, Duk-Chul;Ryu, Ho-Yoon;Kang, Kyung Goo
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.7
    • /
    • pp.485-493
    • /
    • 2021
  • Groundwater is an important water resource that can be used along with surface water. In particular, in the case of island regions, research on groundwater level variability is essential for stable groundwater use because the ratio of groundwater use is relatively high. Researches using artificial intelligence models (AIs) for the prediction and analysis of groundwater level variability are continuously increasing. However, there are insufficient studies presenting evaluation criteria to judge the appropriateness of groundwater level prediction. This study comprehensively analyzed the research results that predicted the groundwater level using AIs for various regions around the world over the past 20 years to present the range of allowable groundwater level prediction errors. As a result, the groundwater level prediction error increased as the observed groundwater level variability increased. Therefore, the criteria for evaluating the adequacy of the groundwater level prediction by an AI is presented as follows: less than or equal to the root mean square error or maximum error calculated using the linear regression equations presented in this study, or NSE ≥ 0.849 or R2 ≥ 0.880. This allowable prediction error range can be used as a reference for determining the appropriateness of the groundwater level prediction using an AI.

Utilizing deep learning algorithm and high-resolution precipitation product to predict water level variability (고해상도 강우자료와 딥러닝 알고리즘을 활용한 수위 변동성 예측)

  • Han, Heechan;Kang, Narae;Yoon, Jungsoo;Hwang, Seokhwan
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.7
    • /
    • pp.471-479
    • /
    • 2024
  • Flood damage is becoming more serious due to the heavy rainfall caused by climate change. Physically based hydrological models have been utilized to predict stream water level variability and provide flood forecasting. Recently, hydrological simulations using machine learning and deep learning algorithms based on nonlinear relationships between hydrological data have been getting attention. In this study, the Long Short-Term Memory (LSTM) algorithm is used to predict the water level of the Seomjin River watershed. In addition, Climate Prediction Center morphing method (CMORPH)-based gridded precipitation data is applied as input data for the algorithm to overcome for the limitations of ground data. The water level prediction results of the LSTM algorithm coupling with the CMORPH data showed that the mean CC was 0.98, RMSE was 0.07 m, and NSE was 0.97. It is expected that deep learning and remote data can be used together to overcome for the shortcomings of ground observation data and to obtain reliable prediction results.

Water table: The dominant control on CH4 and CO2 emission from a closed landfill site

  • Nwachukwu, Arthur N.;Nwachukwu, Nkechinyere V.
    • Advances in environmental research
    • /
    • v.9 no.2
    • /
    • pp.123-133
    • /
    • 2020
  • A time series dataset was conducted to ascertain the effect of water table on the variability in and emission of CH4 and CO2 concentrations at a closed landfill site. An in-situ data of methane/carbon dioxide concentrations and environmental parameters were collected by means of an in-borehole gas monitor, the Gasclam (Ion Science, UK). Linear regression analysis was used to determine the strength of the correlation between ground-gas concentration and water table. The result shows CH4 and CO2 concentrations to be variable with strong negative correlations of approximately 0.5 each with water table over the entire monitoring period. The R2 was slightly improved by considering their concentration over single periods of increasing and decreasing water table, single periods of increasing water table, and single periods of decreasing water table; their correlations increased significantly at 95% confidence level. The result revealed that fluctuations in groundwater level is the key driving force on the emission of and variability in groundgas concentration and neither barometric pressure nor temperature. This finding further validates the earlier finding that atmospheric pressure - the acclaimed major control on the variability/migration of CH4 and CO2 concentrations on contaminated sites, is not always so.

A Study on Time Series Cross-Validation Techniques for Enhancing the Accuracy of Reservoir Water Level Prediction Using Automated Machine Learning TPOT (자동기계학습 TPOT 기반 저수위 예측 정확도 향상을 위한 시계열 교차검증 기법 연구)

  • Bae, Joo-Hyun;Park, Woon-Ji;Lee, Seoro;Park, Tae-Seon;Park, Sang-Bin;Kim, Jonggun;Lim, Kyoung-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.1
    • /
    • pp.1-13
    • /
    • 2024
  • This study assessed the efficacy of improving the accuracy of reservoir water level prediction models by employing automated machine learning models and efficient cross-validation methods for time-series data. Considering the inherent complexity and non-linearity of time-series data related to reservoir water levels, we proposed an optimized approach for model selection and training. The performance of twelve models was evaluated for the Obong Reservoir in Gangneung, Gangwon Province, using the TPOT (Tree-based Pipeline Optimization Tool) and four cross-validation methods, which led to the determination of the optimal pipeline model. The pipeline model consisting of Extra Tree, Stacking Ridge Regression, and Simple Ridge Regression showed outstanding predictive performance for both training and test data, with an R2 (Coefficient of determination) and NSE (Nash-Sutcliffe Efficiency) exceeding 0.93. On the other hand, for predictions of water levels 12 hours later, the pipeline model selected through time-series split cross-validation accurately captured the change pattern of time-series water level data during the test period, with an NSE exceeding 0.99. The methodology proposed in this study is expected to greatly contribute to the efficient generation of reservoir water level predictions in regions with high rainfall variability.

Region-Scaled Soil Erosion Assessment using USLE and WEPP in Korea

  • Kim, Min-Kyeong;Jung, Kang-Ho;Yun, Sun-Gang;Kim, Chul-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.4
    • /
    • pp.314-320
    • /
    • 2008
  • During the summer season, more than half of the annual precipitation in Korea occurs during the summer season due to the geographical location in the Asian monsoon belt. So, this causes severe soil erosion from croplands, which is directly linked to the deterioration of crop/land productivity and surface water quality. Therefore, much attention has been given to develop accurate estimation tools of soil erosion. The aim of this study is to assess the performance of using the empirical Universal Soil Loss Equation (USLE) and the physical-based model of the Water Erosion Prediction Project (WEPP) to quantify eroded amount of soil from agricultural fields. Input data files, including climate, soil, slope, and cropping management, were modified to fit into Korean conditions. Chuncheon (forest) and Jeonju (level-plain) were selected as two Korean cities with different topographic characteristics for model analysis. The results of this current study indicated that better soil erosion prediction can be achieved using the WEPP model since it has better power to illustrate a higher degree of spatial variability than USLE in topography, precipitation, soils, and crop management practices. These present findings are expected to contribute to the development of the environmental assessment program as well as the conservation of the agricultural environment in Korea.

Bias Characteristics Analysis of Himawari-8/AHI Clear Sky Radiance Using KMA NWP Global Model (기상청 전구 수치예보모델을 활용한 Himawari-8/AHI 청천복사휘도 편차 특성 분석)

  • Kim, Boram;Shin, Inchul;Chung, Chu-Yong;Cheong, Seonghoon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1101-1117
    • /
    • 2018
  • The clear sky radiance (CSR) is one of the baseline products of the Himawari-8 which was launched on October, 2014. The CSR contributes to numerical weather prediction (NWP) accuracy through the data assimilation; especially water vapor channel CSR has good impact on the forecast in high level atmosphere. The focus of this study is the quality analysis of the CSR of the Himawari-8 geostationary satellite. We used the operational CSR (or clear sky brightness temperature) products in JMA (Japan Meteorological Agency) as observation data; for a background field, we employed the CSR simulated using the Radiative Transfer for TOVS (RTTOV) with the atmospheric state from the global model of KMA (Korea Meteorological Administration). We investigated data characteristics and analyzed observation minus background statistics of each channel with respect to regional and seasonal variability. Overall results for the analysis period showed that the water vapor channels (6.2, 6.9, and $7.3{\mu}m$) had a positive mean bias where as the window channels(10.4, 11.2, and $12.4{\mu}m$) had a negative mean bias. The magnitude of biases and Uncertainty result varied with the regional and the seasonal conditions, thus these should be taken into account when using CSR data. This study is helpful for the pre-processing of Himawari-8/Advanced Himawari Imager (AHI) CSR data assimilation. Furthermore, this study also can contribute to preparing for the utilization of products from the Geo-Kompsat-2A (GK-2A), which will be launched in 2018 by the National Meteorological Satellite Center (NMSC) of KMA.