• Title/Summary/Keyword: Water level of reservoir

Search Result 477, Processing Time 0.024 seconds

Optimal Flood Control Volume in the Irrigation Reservoir (관개저수지의 적정 홍수조절용량 설정방법)

  • 김태철;문종필;민진우;이훈구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.2
    • /
    • pp.81-91
    • /
    • 1998
  • Water level of irrigation reservoir during the flood season could be kept to a certain level, so called, flood control level by releasing the flood inflow in advance in order to reduce the peak discharge of next coming flood and the damage of inundation. Concept of restriction intensity of water supply was introduced to evaluate the influence of flood control volume on the irrigation water supply. Restriction intensity can be calculated by multiplying the ratio of restriction to the days of restriction which are obtained from the operation rule curve and daily water level of irrigation reservoir and it has the dimension of % day. The method of restriction intensity was applied to the Yedang irrigation reservoir with the observed data of 30 years to review whether the present flood control volume is reasonable or not, and suggest the optimal flood control volume, if possible.

  • PDF

The Comparative Analysis of Reservoir Capacity of Chungju Dam based on Multi Dimensional Spatial Information (다차원 공간정보 기반의 충주댐 저수용량 비교분석)

  • Lee, Geun Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5D
    • /
    • pp.533-540
    • /
    • 2010
  • Dam is very important facility in water supply and flood control. Therefore study needs to analyze reservoir capacity accurately to manage Dam efficiently. This study compared time series reservoir capacity using multi-dimensional spatial information to Chungju Dam reservoir and major conclusions are as follows. First, LiDAR and multi beam echo sounder survey were carried out in land zone and water zone of Dam reservoir area. And calibration process was performed to enhance the accuracy of survey data and it could be constructed that multi dimensional spatial information which was clearly satisfied with the standard of tolerance error by validation with ground control points. Reservoir capacity by water level was calculated using triangle irregular network from detailed topographic data that was constructed by linked with airborne LiDAR and multi beam echo sounder data, and curve equation of reservoir capacity was developed through regression analysis in 2008. In the comparison of the reservoir capacity of 2008 with those of 1986 and 1996, the higher water level goes, total reservoir capacity of 2008 showed decrease because of the increase of sediment in reservoir. Also, erosion and sediment area could be analyzed through calculating the reservoir capacity by the range of water level. Especially the range of water level as 130.0~135.0 which is the upper part of average water level, showed the highest erosion characteristics during 1986~2008 and 1996~2008 and it is considered that the erosion of reservoir slant by heavy rainfall is major reason.

Determination of Flood-limited Water Levels of Agricultural Reservoirs Considering Irrigation and Flood Control (농업용 저수지의 이·치수 기능을 고려한 홍수기 제한수위 설정 기법 개발)

  • Kim, Jihye;Kwak, Jihye;Jun, Sang Min;Lee, Sunghack;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.6
    • /
    • pp.23-35
    • /
    • 2023
  • In this study, we developed a method to determine the flood-limited water levels of agricultural reservoirs, considering both their irrigation and flood control functions. Irrigation safety and flood safety indices were defined to be applied to various reservoirs, allowing for a comprehensive assessment of the irrigation and flood control properties. Seasonal flood-limited water level scenarios were established to represent the temporal characteristics of rainfall and agricultural water supply and the safety indices were analyzed according to these scenarios. The optimal scenarios were derived using a schematic solution based on Pareto front analysis. The method was applied to Obong, Yedang, and Myogok reservoirs, and the results showed that the characteristics of each reservoir were well represented in the safety indices. The irrigation safety of Obong reservoir was found to be significantly influenced by the late-stage flood-limited water level, while those of Yedang and Myogok reservoir were primarily affected by the early and mid-stage flood-limited water levels. The values of irrigation safety and flood safety indices for each scenario were plotted as points on the coordinate plane, and the optimal flood-limited water levels were selected from the Pareto front. The storage ratio of the optimal flood-limited water levels for the early, mid, and late stages were 65-70%, 70%, and 75% for Obong reservoir, 75%, 70-75%, and 65-70% for Yedang reservoir, and 75-80%, 70%, and 50% for Myogok reservoir. We expect that the method developed in this study will facilitate efficient reservoir operations.

A Study on Time Series Cross-Validation Techniques for Enhancing the Accuracy of Reservoir Water Level Prediction Using Automated Machine Learning TPOT (자동기계학습 TPOT 기반 저수위 예측 정확도 향상을 위한 시계열 교차검증 기법 연구)

  • Bae, Joo-Hyun;Park, Woon-Ji;Lee, Seoro;Park, Tae-Seon;Park, Sang-Bin;Kim, Jonggun;Lim, Kyoung-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.1
    • /
    • pp.1-13
    • /
    • 2024
  • This study assessed the efficacy of improving the accuracy of reservoir water level prediction models by employing automated machine learning models and efficient cross-validation methods for time-series data. Considering the inherent complexity and non-linearity of time-series data related to reservoir water levels, we proposed an optimized approach for model selection and training. The performance of twelve models was evaluated for the Obong Reservoir in Gangneung, Gangwon Province, using the TPOT (Tree-based Pipeline Optimization Tool) and four cross-validation methods, which led to the determination of the optimal pipeline model. The pipeline model consisting of Extra Tree, Stacking Ridge Regression, and Simple Ridge Regression showed outstanding predictive performance for both training and test data, with an R2 (Coefficient of determination) and NSE (Nash-Sutcliffe Efficiency) exceeding 0.93. On the other hand, for predictions of water levels 12 hours later, the pipeline model selected through time-series split cross-validation accurately captured the change pattern of time-series water level data during the test period, with an NSE exceeding 0.99. The methodology proposed in this study is expected to greatly contribute to the efficient generation of reservoir water level predictions in regions with high rainfall variability.

An Evaluation of the Flood Control Effect according to the Hancheon Reservoir Operation (한천저류지 운영에 따른 홍수조절효과 평가)

  • Moon, Duk Chul;Jung, Kwan Sue;Park, Won Bae;Kim, Yong Cheol
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.2
    • /
    • pp.107-117
    • /
    • 2014
  • Hancheon reservoir, which is located upstream of Jeju city, has been built for flood mitigation after Typhoon Nari, 2007. To verify flood mitigating effect of the this reservoir on the downstream area, runoff analysis based on the measured data (two stream discharge monitoring stations and inflow data to the reservoir) is carried out during torrential rain followed by typhoon Dainmu, 2010. The stream water level was recorded as 3.14 m for the peak at the down gradient station. The stream water level under the assumption of absence of Hancheon reservoir is calculated as 4.16 m using the estimated rating curve, stream water propagation velocity, and the bypassed volume of water to the reservoir. This result shows that clear effect of reservoir operation which is capable of mitigating peak discharge in the downstream area.

Development of a Hydrologic System for Simulating Daily Water Storage in an Estuary Reservoir

  • Noh, Jae-Kyoung
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.7
    • /
    • pp.1-10
    • /
    • 2003
  • In order to analyze the water supply capacity in an estuary reservoir, a system composed of daily water balance model and daily inflow model was developed. The agricultural water demands to paddy fields, domestic water demands to residential areas, and industrial water demands to industrial complexes were considered in this daily water balance model. Likewise, the outflow volume through sluice gates and inside the water level at the start of the outflow was initially conditioned to simulate estuary reservoir storage. The DAWAST model (Noh, 1991) was selected to simulate daily estuary reservoir inflow, wherein return flows from agricultural, domestic, and industrial water were included to simulate runoff. Using this system, the water supply capacity in the Geum River estuary reservoir was analyzed.

System identification of arch dam model strengthened with CFRP composite materials

  • Altunisik, A.C.;Gunaydin, M.;Sevim, B.;Adanur, S.
    • Steel and Composite Structures
    • /
    • v.25 no.2
    • /
    • pp.231-244
    • /
    • 2017
  • This paper presents the structural identification of an arch dam model for the damaged, repaired and strengthened conditions under different water levels. For this aim, an arch dam-reservoir-foundation model has been constructed. Ambient vibration tests have been performed on the damaged, repaired and strengthened dam models for the empty reservoir (0 cm), 10 cm, 20 cm, 30 cm, 40 cm, 50 cm and full reservoir (60 cm) water levels to illustrate the effects of water levels on the dynamics characteristics. Enhanced Frequency Domain Decomposition Method in the frequency domain has been used to extract the dynamic characteristics. The dynamic characteristics obtained from the damaged, repaired and strengthened dam models show that the natural frequencies and damping ratios are considerably affected from the varying water level. The maximum differences between the frequencies for the empty and full reservoir are obtained as 16%, 33%, and 25% for damaged, repaired and strengthened model respectively. Mode shapes obtained from the all models are not affected by the increasing water level. Also, after the repairing and strengthening implementations, the natural frequencies of the arch dam model increase significantly. After strengthening, between 46-92% and 43-62% recovery in the frequencies are calculated for empty and full reservoir respectively. Apparently, after strengthening implementation, the mode shapes obtained are more acceptable and distinctive compared to those for the damaged model.

Calculation of Unit Hydrograph from Discharge Curve, Determination of Sluice Dimension and Tidal Computation for Determination of the Closure curve (단위유량도와 비수갑문 단면 및 방조제 축조곡선 결정을 위한 조속계산)

  • 최귀열
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.7 no.1
    • /
    • pp.861-876
    • /
    • 1965
  • During my stay in the Netherlands, I have studied the following, primarily in relation to the Mokpo Yong-san project which had been studied by the NEDECO for a feasibility report. 1. Unit hydrograph at Naju There are many ways to make unit hydrograph, but I want explain here to make unit hydrograph from the- actual run of curve at Naju. A discharge curve made from one rain storm depends on rainfall intensity per houre After finriing hydrograph every two hours, we will get two-hour unit hydrograph to devide each ordinate of the two-hour hydrograph by the rainfall intensity. I have used one storm from June 24 to June 26, 1963, recording a rainfall intensity of average 9. 4 mm per hour for 12 hours. If several rain gage stations had already been established in the catchment area. above Naju prior to this storm, I could have gathered accurate data on rainfall intensity throughout the catchment area. As it was, I used I the automatic rain gage record of the Mokpo I moteorological station to determine the rainfall lntensity. In order. to develop the unit ~Ydrograph at Naju, I subtracted the basic flow from the total runoff flow. I also tried to keed the difference between the calculated discharge amount and the measured discharge less than 1O~ The discharge period. of an unit graph depends on the length of the catchment area. 2. Determination of sluice dimension Acoording to principles of design presently used in our country, a one-day storm with a frequency of 20 years must be discharged in 8 hours. These design criteria are not adequate, and several dams have washed out in the past years. The design of the spillway and sluice dimensions must be based on the maximun peak discharge flowing into the reservoir to avoid crop and structure damages. The total flow into the reservoir is the summation of flow described by the Mokpo hydrograph, the basic flow from all the catchment areas and the rainfall on the reservoir area. To calculate the amount of water discharged through the sluiceCper half hour), the average head during that interval must be known. This can be calculated from the known water level outside the sluiceCdetermined by the tide) and from an estimated water level inside the reservoir at the end of each time interval. The total amount of water discharged through the sluice can be calculated from this average head, the time interval and the cross-sectional area of' the sluice. From the inflow into the .reservoir and the outflow through the sluice gates I calculated the change in the volume of water stored in the reservoir at half-hour intervals. From the stored volume of water and the known storage capacity of the reservoir, I was able to calculate the water level in the reservoir. The Calculated water level in the reservoir must be the same as the estimated water level. Mean stand tide will be adequate to use for determining the sluice dimension because spring tide is worse case and neap tide is best condition for the I result of the calculatio 3. Tidal computation for determination of the closure curve. During the construction of a dam, whether by building up of a succession of horizontael layers or by building in from both sides, the velocity of the water flowinii through the closing gapwill increase, because of the gradual decrease in the cross sectional area of the gap. 1 calculated the . velocities in the closing gap during flood and ebb for the first mentioned method of construction until the cross-sectional area has been reduced to about 25% of the original area, the change in tidal movement within the reservoir being negligible. Up to that point, the increase of the velocity is more or less hyperbolic. During the closing of the last 25 % of the gap, less water can flow out of the reservoir. This causes a rise of the mean water level of the reservoir. The difference in hydraulic head is then no longer negligible and must be taken into account. When, during the course of construction. the submerged weir become a free weir the critical flow occurs. The critical flow is that point, during either ebb or flood, at which the velocity reaches a maximum. When the dam is raised further. the velocity decreases because of the decrease\ulcorner in the height of the water above the weir. The calculation of the currents and velocities for a stage in the closure of the final gap is done in the following manner; Using an average tide with a neglible daily quantity, I estimated the water level on the pustream side of. the dam (inner water level). I determined the current through the gap for each hour by multiplying the storage area by the increment of the rise in water level. The velocity at a given moment can be determined from the calcalated current in m3/sec, and the cross-sectional area at that moment. At the same time from the difference between inner water level and tidal level (outer water level) the velocity can be calculated with the formula $h= \frac{V^2}{2g}$ and must be equal to the velocity detertnined from the current. If there is a difference in velocity, a new estimate of the inner water level must be made and entire procedure should be repeated. When the higher water level is equal to or more than 2/3 times the difference between the lower water level and the crest of the dam, we speak of a "free weir." The flow over the weir is then dependent upon the higher water level and not on the difference between high and low water levels. When the weir is "submerged", that is, the higher water level is less than 2/3 times the difference between the lower water and the crest of the dam, the difference between the high and low levels being decisive. The free weir normally occurs first during ebb, and is due to. the fact that mean level in the estuary is higher than the mean level of . the tide in building dams with barges the maximum velocity in the closing gap may not be more than 3m/sec. As the maximum velocities are higher than this limit we must use other construction methods in closing the gap. This can be done by dump-cars from each side or by using a cable way.e or by using a cable way.

  • PDF

Safety Evaluations of Reservoir Embankment by Instrument System (계측시스템에 의한 저수지 제체의 안정성 평가)

  • Kim, Mi-Hyun;Lee, Dal-Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.6
    • /
    • pp.33-43
    • /
    • 2009
  • This study analyzed data on the pore water pressure, the ground water level, the horizontal displacement and the resistivity monitoring from instrument system, which is established to evaluate the safety in reservoirs. The pore water pressure in the embankment ranged from $0.035{\sim}1.116kg/cm^2$. The seepage that piping showed, as well as the leakage from the reservoirs are acceptable for the safety management of the reservoir. The maximum horizontal displacement and direction analyzed from the measured inclinometer data gives us very effective information to evaluate the safety in reservoirs. The resistivity monitoring technique, which is obtained on the reservoir crest, is an efficient tool to detect leakage zone. The safety index (SI) was predicted by the resistivity monitoring, and was evaluated to have a safety level of 0.8-1.0 at all reservoirs. Safety evaluations of reservoir through instrument systems are effective when studying the embankment, when the results of the instrument system have been analyzed compositively.