• 제목/요약/키워드: Water leaching

검색결과 570건 처리시간 0.02초

간척지 토양의 제염과정중 수리전도도의 변화 (Changes of Hydraulic Conductivity During Desalmization of Reclaimed Tidelands)

  • 구자웅;은종호
    • 한국농공학회지
    • /
    • 제30권4호
    • /
    • pp.85-93
    • /
    • 1988
  • This laboratory study was carried out in order to produce fundamental data for analyzing salt movement and desalinization effects, using samples of silt loam soil collected in Gyehwado and Daeho reclaimed tidelans, and samples of silty clay loam soil collected in Kimie tideland. Desalinization experiments with gypsum treatment were performed to analyze changes of the hydraulicc conductivity with changes of the soil property and the salt concentration during the desalinization of reclaimed tideland soils by leaching through the subsufface drainage, and correlations between factors infl uencing the reclamation of salt affected soils were analyzed by the statistical method. The results were summarized as follows: 1. The reclaimed tideland soils used in this study were saline-sodic soils with the high exchangeable sodium percentage and the high electrical conductivity. 2. Changes of the hydraulic conductivity with the amount of leaching water and the leaching time elapsed were affected by the amount of gypsum except exchangeable sodium and clay contents. The regression equation between the depth of water leached per unit depth of soil (Dw / Ds : X) or the square root of the leaching time elapsed (T $^1$ $^2$ : X) and the relative hydraulic conductivity (HCr:Y) could be expressed in Y=a . bx. 3. The more exchangeable sodium and clay contents regardless of the amount of gypsum, the more the leaching time was required until a given volume of water was leached through the soil profile. The regression analysis showed that the relationship between the depth of water leached per unit depth of soil(Dw /Ds:X) and the square root of the leaching time elapsed(T$^1$$^2$ :Y) could be described by Y=a . Xb. 4. The hydraulic conductivity was influenced to a major degree by the salt concentration provided that the electrical conductivity was below 10 mmhos / cm during the desalinization of reclaimed tideland soils. The regression equation between the relative electrical conductivity ( ECr : X) and the relative hydraulic conductivity (HCr:Y) could be expressed in Y=a + b . X-$^1$. 5. In conclusion, the hydraulic conductivity, leaching requirements and the leaching time elapsed can be estimated when the salt concentration decreases to a certain level during the desalinization of reclaimed tidelands, and the results may be applied to the analysis of salt movement and desalinization effects.

  • PDF

Effect of soil physical properties on nitrogen leaching during sesame (Sesamum indicum L.) cultivation under lysimeter conditions

  • Chan-Wook Lee;Jung-Hun Ok;Yang-Min Kim;Yo-Sung Song;Hye-Jin Park;Byung-Keun Hyun;Ye-Jin Lee;Taek-Keun Oh
    • 농업과학연구
    • /
    • 제49권2호
    • /
    • pp.379-387
    • /
    • 2022
  • A large amount of the mineral nitrogen is necessary for crop growth. With the use of nitrogen fertilizers, agricultural yield has increased during the last few decades. However, at the same time, nitrate from the cultivated land can be a source of environmental pollution, especially in water systems. For nitrogen management, it is necessary to analyze the pattern of nitrogen movement in soil. In this study, nitrogen leaching in upland soils was evaluated using undisturbed lysimeters with different soil textures during sesame cultivation. The soil texture of the lysimeters was clay loam (Songjung series) and sandy loam (Sangju series) soils. Sesame was cultivated from May 25 to August 24 in 2020. The standard amount of NPK fertilizer (N-P2O5-K2O = 2.9-3.1-3.2 kg·10 a-1) was applied before sowing. The amount of nitrogen leaching was calculated by multiplying the nitrogen (NO3-N + NH4-N) concentration and the amount of water drained below 1.5 m soil depth. The water was drained through percolation into macropores in the clay loam lysimeter. In contrast, in the sandy loam lysimeter, water drained more slowly than in the clay loam lysimeter. There was a slight difference in the total amount of leachate during the cultivation period, but the amount of nitrogen leaching was high in sandy loam soil. During the sesame cultivation period, the amount of nitrogen leaching from clay soil was 5.64 kg·10 a-1, and 10.70 kg·10 a-1 for sandy soil. We found that there was a difference in leaching depending on the soil physical characteristics. Therefore, it is necessary to consider the characteristics of soil to evaluate the leaching of nitrogen.

토양 중 cis 및 trans-Permethrin의 흡착 및 침출 (Adsorption and Leaching of cis and frans-Permethrin in the Soil)

  • ;김정호
    • 한국환경과학회지
    • /
    • 제4권4호
    • /
    • pp.379-386
    • /
    • 1995
  • 합성 Pyrethroid계 pennethrin[3-phenoxybenzyl(1RS)-cis,trans-3-(2,2-dichlorovinyI)-2,2-dimethylcyclopropanecarboxylate]은 直接接觸 殺蟲劑로서, 哺乳動物에는 매우 底毒性이므 로 使用훌이 增加되고 있다. 따라서 土훌中 pennethrin의 動態를 豫願할 必要가 있다. Permethrin을 GC-ECD로 分析하였으며, cis-pennethrin은 32.5%였고 trans-pennethrin은 67.4%였다. Commerce silty clay loam 土壤에서 Koc값은 CIS 및 trans-pennethrin이 각각 938 및 877였다. 土壤 컬럼$(5.4 cm i.d. \times 26 cm length)$을 利用한 溶脫實廣올 하였다. 3배의 pore 부피에 해당하는 물로 cis-pennethrin올 浸出할 경우, 處理된 土壞層에 74.00%였고 6.10%만 아래충으로 移動되었으며,0.07%의 澈훌만 漫出水로 浸出되었다. Pennethrin은 土황에 강하게 吸훌되기 때문에, 土壤 column에서의 漫出量도 매우 적었다. 따라서 自然系에서의 漫出(Leaching) 및 유거(Runoff)농도는 매우 낮을 것으로 據測된다.

  • PDF

토양 특성이 CCA 처리재로부터 방부제 성분의 용탈에 미치는 영향 (Effect of Soil Properties on Leaching of Preservative Components from CCA-treated Wood)

  • 정용기;김규혁
    • Journal of the Korean Wood Science and Technology
    • /
    • 제33권6호통권134호
    • /
    • pp.87-94
    • /
    • 2005
  • 본 연구는 지접부용 처리목재의 지하부에서 발생하는 방부제 유효성분의 용탈에 관한 연구로 토양의 물리 및 화학적 특성이 방부제 유효성분의 용탈에 미치는 영향을 파악하기 위하여 수행하였다. CCA 처리 라디에타소나무 시편을 국내의 대표적인 네 가지 토양(미사질양토, 양토, 사질양토, 사토)에 매립하여 12주간의 용탈기간 동안 토양이 항상 물로 포화된 상태가 유지되도록 토양 용탈시험을 실시하였으며, 토양 용탈시험 결과와 비교할 목적으로 물 용탈시험을 병행하여 실시하였다. 토양 종류에 따른 처리목채로부터 방부제 유효성분의 용탈을 차이가 관찰되었으나 토양 용탈은 물 용탈보다 유효성분의 용탈율이 낮았다. CCA 처리목재로부터 크롬, 구리, 비소 용탈율은 각각 사질양토, 양토, 사토에서 가장 높았으며, 모든 유효성분의 용탈율이 미사질양토에서 가장 낮았다. 토양의 물리 및 화학적 특성과 용탈율 간의 관계를 살펴본 결과, 방부제 유효성분의 용탈율이 토양 특성에 의해 매우 상이하게 영향을 받음을 알 수 있었다. CCA 처리목재로부터 구리 용탈은 토양내 치환성 마그네슘 및 염기총량의 영향을 받았다. CCA 처리목재로부터 크롬 용탈은 토양내 치환성 마그네슘($Mg^{2+}$) 함량의 영향을 받았으며, 비소 용탈은 토양내 치환성 칼륨($K^+$), 중금속인 니켈(Ni), 망간(Mn), 철(Fe), 크롬(Cr), 구리(Cu) 함량의 영향을 받았다. 본 연구 결과와 기존 연구 결과들 간에, 그리고 기존 연구결과들 간에도 토양 특성과 방부제 유효성분 용탈율 간의 관계가 서로 상이하게 보고되고 있다. 따라서 앞으로 이에 대한 보다 심도 있는 연구가 필요하리라 판단된다. 또한 실험실 규모의 용탈시험을 통해 얻은 본 연구의 결과를 입증하기 위해서 수분 조건과 토양 미생물의 종류와 분포가 상이한 실제 야외 지접부 환경에서의 연구가 반드시 필요하다.

Numerical simulation on integrated curing-leaching process of slag-blended cement pastes

  • Xiang-Nan Li;Xiao-Bao Zuo;Yu-Xiao Zou;Guang-Pan Zhou
    • Computers and Concrete
    • /
    • 제32권1호
    • /
    • pp.45-60
    • /
    • 2023
  • Concrete in water environment is easily subjected to the attack of leaching, which causes its mechanical reduction and durability deterioration, and the key to improving the leaching resistance of concrete is to increase the compaction of its microstructure formed by the curing. This paper performs a numerical investigation on the intrinsic relationship between microstructures formed by the hydration of cement and slag and leaching resistance of concrete in water environment. Firstly, a shrinking-core hydration model of blended cement and slag is presented, in which the interaction of hydration process of cement and slag is considered and the microstructure composition is characterized by the hydration products, solution composition and pore structure. Secondly, based on Fick's law and mass conservation law, a leaching model of hardened paste is proposed, in which the multi-species ionic diffusion equation and modified Gérard model are established, and the model is numerically solved by applying the finite difference method. Finally, two models are combined by microstructure composition to form an integrated curing-leaching model, and it is used to investigate the relationship between microstructure composition and leaching resistance of slag-blended cement pastes.

간척지토양의 제염용수량산정에 관한 실험연구 (A Laboratory Study on the Estimation of Water Requirements for the Desalinization of Reclaimed Tidelands)

  • 구자웅;한강원;은종호
    • 한국농공학회지
    • /
    • 제31권1호
    • /
    • pp.96-105
    • /
    • 1989
  • This laboratory study was performed to produce basic data for the estimation of water requirements for desalinization, through analyzing changes of the electrical conductivity and the exchangeable sodium percentage during the desalinization of reclaimed tidelands. Desalinization experiments were carried out by two water management practices, namely, the leaching method by subsurface drainage and the rinsing method by surface drainage, using samples of silt loam soil and silty clay loam soil collected in reclaimed tidelands. The results obtained from this study were summarized as follows : 1. The sample soils used in this study were saline-sodic soils with the high electrical conductivity and the high exchangeable sodium percentage. 2. Changes of the electrical conductivity and the exchangeable sodium percentage with water requirements for desalinization showed a similar tendency in the desalinization experiment by the same water management practice. 3. The regression equation between the relative electrical conductivity(EC/EC) and water requirements for desalinization(Dw/Ds) could be described by Dw/Ds=O. 29x(EC/EC.) -0.982 (Leaching method), Dw/Ds=3. 678X0. 030(EC/EC ) (Rinsing method). 4. The regression equation between the relative exchangeable sodium percentage (ESP/ESP ) and water requirements for desalinization (Dw/Ds) could be expressed in Dw/Ds = 0.039 x (ESP/ESP. ) - 1. 134 (Leaching method), Dw/Ds=7. 197X0. 024(ESP/ESP ) (Rinsing method). 5. It was estimated that water requirements for the adequate desalinization would be Dw/Ds=0.3 (Leaching method) and Dw/Ds=3.0 (Rinsing method)

  • PDF

VTM 정광 염배소 산물에 대한 바나듐 수침출 거동 분석 및 고농도 바나듐 용액 제조 (The Water Leaching Behavior of Vanadium from a Salt-roasted VTM Concentrate and the Preparation of High-concentration Vanadium Solution)

  • 박유진;김리나;김민석;전호석;정경우
    • 자원리싸이클링
    • /
    • 제31권2호
    • /
    • pp.56-62
    • /
    • 2022
  • 본 연구에서는 탄산나트륨(Na2CO3)을 사용하여 염배소한 함바나듐 티탄철광(VTM)으로부터 바나듐의 수침출 거동을 고찰하였다. 자력선별 된 정광과 Na2CO3를 질량비 4:1로 혼합한 후 1050 ℃, 3시간 조건에서 염배소하고 로드밀을 사용해 D50=48.79 ㎛로 분쇄하여 연구에 사용하였으며 침출 온도와 광액 농도를 수침출 영향인자로 선정하였다. 연구 결과, 온도가 25, 55, 85 ℃로 증가할수록 바나듐의 침출율은 90.4, 88.2, 83.8%로 감소하였으며 광액 농도 10, 50, 100 w/v%에 따른 바나듐 침출율은 각각 90.4, 87.0, 87.0%로 변화가 크지 않았다. 이를 바탕으로 25 ℃, 100 w/v%, 300 rpm, 1시간의 조건에서 다단 침출을 수행한 결과, 총 4단 침출 후 최종 침출액의 바나듐 농도는 16.20 g/L로 분석되었다. 따라서 다단 침출을 통해 고농도 소듐바나데이트 용액의 제조가 가능하였다.

Numerical simulation on the coupled chemo-mechanical damage of underground concrete pipe

  • Xiang-nan Li;Xiao-bao Zuo;Yu-xiao Zou;Yu-juan Tang
    • Structural Engineering and Mechanics
    • /
    • 제86권6호
    • /
    • pp.779-791
    • /
    • 2023
  • Long-termly used in water supply, an underground concrete pipe is easily subjected to the coupled action of pressure loading and flowing water, which can cause the chemo-mechanical damage of the pipe, resulting in its premature failure and lifetime reduction. Based on the leaching characteristics and damage mechanism of concrete pipe, this paper proposes a coupled chemo-mechanical damage and failure model of underground concrete pipe for water supply, including a calcium leaching model, mechanical damage equation and a failure criterion. By using the model, a numerical simulation is performed to analyze the failure process of underground concrete pipe, such as the time-varying calcium concentration in concrete, the thickness variation of pipe wall, the evolution of chemo-mechanical damage, the distribution of concrete stress on the pipe and the lifetime of the pipe. Results show that, the failure of the pipe is a coupled chemo-mechanical damage process companied with calcium leaching. During its damage and failure, the concentrations of calcium phase in concrete decrease obviously with the time, and it can cause an increase in the chemo-mechanical damage of the pipe, while the leaching and abrasion induced by flowing water can lead to the boundary movement and wall thickness reduction of the pipe, and it results in the stress redistribution on the pipe section, a premature failure and lifetime reduction of the pipe.

해수-석탄회 상호작용에 의한 원소 용출특성: 실험연구

  • 박성민;김강주;장수범;황갑수
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 총회 및 춘계학술발표회
    • /
    • pp.455-458
    • /
    • 2003
  • We investigated the leaching of elements from anthracite ashes by interactions with seawater. The results show that consumption rates of dissolved oxygen are 7.5 times greater in the seawater system than in the fresh water system and indicate that the differences in DO consumption rate may plat a role in regulating the element leaching from the coal ashes. It is revealed that seawater's pH buffering capacity is the most important factor that makes the leaching of elements and their chemical behaviors in the seawater system different from those in the fresh water environments. In overall, element leaching from the weathered ash is smaller than that from the fresh ash. However, the leaching of Si, Fe, Al, Mn, phosphate, and some other elements were independent of weathering. They were dependant only on the pH of the solutions.

  • PDF

Prediction of calcium leaching resistance of fly ash blended cement composites using artificial neural network

  • Yujin Lee;Seunghoon Seo;Ilhwan You;Tae Sup Yun;Goangseup Zi
    • Computers and Concrete
    • /
    • 제31권4호
    • /
    • pp.315-325
    • /
    • 2023
  • Calcium leaching is one of the main deterioration factors in concrete structures contact with water, such as dams, water treatment structures, and radioactive waste structures. It causes a porous microstructure and may be coupled with various harmful factors resulting in mechanical degradation of concrete. Several numerical modeling studies focused on the calcium leaching depth prediction. However, these required a lot of cost and time for many experiments and analyses. This study presents an artificial neural network (ANN) approach to predict the leaching depth quickly and accurately. Totally 132 experimental data are collected for model training and validation. An optimal ANN model was proposed by ANN topology. Results indicate that the model can be applied to estimate the calcium leaching depth, showing the determination coefficient of 0.91. It might be used as a simulation tool for engineering problems focused on durability.