• Title/Summary/Keyword: Water leaching

Search Result 570, Processing Time 0.02 seconds

Nutrient Uptake and Leaching Under Different Fertilizer Treatment for Corn and Potato Growth in Volcanic Ash Soil (화산회토에서 옥수수와 감자의 시비처리에 따른 양분 흡수 및 용탈)

  • 강봉균;박양문;강영길
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.3
    • /
    • pp.253-259
    • /
    • 2001
  • The purpose of this study was loused on understanding of uptake of nutrients by plants, the behaviors of nutrients in soil and the possibility of leaching loss when N fertilizer (urea) and mature compost were applied. Lysimeters (volume 0.15㎥, diameter 62cm, height 62.8cm) were installed for collecting leachate in the Jeju volcanic ash soils. Lysimeter study consisted of thirteen treatments: fellow, fellow with weeding, cropping without fertilizer and compost, three N fertilizer soil surface applications (16, 32, and 64 kg/10a), three N fertilizer and compost soil surface applications (16+800i 32+1600, and 64+3200 kg/10a), two water dissolved N fertilizer applications(16 and 32 kg/10a), and low and high plant densities. The growth of corn (preceding crop) and potatoes (succeeding crop) and leaching loss were determined during the experimental period. The amount of leachate from lysimeter was remarkably greater at bare conditions than at cropping conditions for corn and potatoes. The N content of plants (corn and potatoes) tended to increase as fertilizer rate increased. Fertilization of urea dissolved in water to soil was more efficient than surface fertilization for the growth, yield, and the N uptake N of corn and potatoes. There were no differences in dry matter yield of plants between medium and high N rates, but N, Ca, K and Mg concentrations of plants were higher at higher N rates. There were significant correlations between N uptake and each of Ca, K and Mg uptakes in corn and potatoes. Total N uptake by plants increased with increased N fertilizer and compost applications. Plane absorbed 54.9% of applied N at low N rate and 31.0 to 34.0% at high N rates. The proportion of N leaching losses was lower at low N rate and high plant density.

  • PDF

The effect of seasonal water temperature on sedimentation characteristics of dredged clay (계절별 수온에 따른 점토의 침강압밀 특성 연구)

  • Oak, Young-Suk;An, Yong-Hoon;Lee, Chul-Ho;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.1183-1189
    • /
    • 2009
  • The sedimentation rate of particles in a suspension is a function of particle size, initial slurry water content and salinity. Many researches conducted on the behavior of dredged soils have centered on such factors. However, there have been few attempts to assess another important influence factor of seasonal water temperature on designing the placement of dredged materials. In this paper, the effect of seasonal water temperature on sedimentation characteristics of dredged clay was investigated with consideration of three different water temperatures, that are $5^{\circ}C$, $15^{\circ}C$, $35^{\circ}C$, which represent critical water temperatures in winter, spring or fall, and summer, respectively. A series of experimental results reveal that the sedimentation rates for the water temperature of $15^{\circ}C$ and $35^{\circ}C$ are very similar each other, but that of $5^{\circ}C$ that represents a winter season leads to a considerably delayed sedimentation compared to the others. This may be attributable to the retardation of ion-leaching from clay particles at low water temperature.

  • PDF

A Leaching Characteristics on Lime Stabilization of Heavy Metal Contaminated Soil in a Waste Mine Area (폐 광산 지역 중금속 오염 토양의 석회안정화 적용 시 용출특성)

  • Oa, Seong-Wook
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.862-867
    • /
    • 2011
  • Pozzolanic-based stabilization/solidification (S/S) is an effective and economic remediation technology to immobilize heavy metals in contaminated soils. In this study, quick lime (CaO) was used to immobilize cadmium and zinc present in waste mine contaminated clayey sand soils. Addition of 5% quicklime to the contaminated soils effectively reduced heavy metal leachability after 2 bed volume operation below the drinking water regulatory limits. Lime addition was revealed to increase the immobilization for all heavy metals in tested pH ranges, so it could be an optimal choice for short-term remediation of heavy metal contaminated soil. The mass balances for these column tests show metal reduction of 92% for Cd and 87% for Zn of total resolved mass in case of 5% lime application.

Crop Growth and Nutrient leaching from Soil with Application of Urea and Compost in Volcanic Ash Soil (화산회토에서 퇴비 및 요소시용에 따른 토양중 $NO_3$-N, 양이온의 용탈)

  • 강봉균;송창길
    • Korean Journal of Organic Agriculture
    • /
    • v.9 no.2
    • /
    • pp.101-115
    • /
    • 2001
  • Nitrogen applied as fertilizer for crop production is partly absorbed by plant , and the remaining nitrogen in soil might be leached out through complicated processes to the subsoil layer Especially, NO$_3$-N in leachate causes environmental pollution. The purpose of this study was focused on understanding of uptake of nutrients by plants, the behaviors of nutrients in soil and the possibility of leaching loss when nitrogen fertilizer and completely decomposed compost were applied. Lysimeters(Volume 0.15㎥, Diameter 62cm, Height 62.8cm) were installed for collecting leachate in the Jeju volcanic ash soils. Lysimeter study consisted of thirteen treatments : fallow, fallow with weeding, cropping without fertilizer and compost, three N fertilizer soil surface applications(16, 32, 64kg/10a), three N fertilizer and compost soil surface applications(16+800, 32+1600, 64+32kg/10a), two water dissolved N fertilizer applications(16, 32kg/10a), and low and high plant densities. N fertilizer was applied as urea. The growth of com(preceding crop) and potatoes(succeeding crop) and leaching loss were determined during the experimental period. The results obtained were summarized as follows ; With Increased N, pH of leachate tended to decrease and NO$_3$-N concentration of leachate increased. NO$_3$-N leaching loss was remarkably greater in soil from the bare plot without fertilization and the weed control than from plots with medium N rate and was least in the cropping plot without fertilization. NO$_3$-N concentration in leachates from the water dissolved N fertilizer application plots was 64% of that from the soil surface application plots. The concentration of Ca and K ions and the leaching loss of these ions were least from the cropping plot without fertilization and were greatest from bare plots(T1 and T2) without fertilization. The proportion of leaching and residual N in soil increased as N rate increased indicting that higher N rates increase the possibility of N leaching to subsoil layer The proportion of N leaching losses was lower at the low N rate and the high plant density. In future, fertilization prescription which can maximize fertilizer use efficiency and minimize the pollution of ground water will be needed for conserving the environments.

  • PDF

A Study on the Recovery of Lithium from Secondary Resources of Ceramic Glass Containing Li-Al-Si by Ca-based Salt Roasting and Water Leaching Process (Li-Al-Si 함유 유리세라믹 순환자원으로부터 Ca계열 염배소법 및 이에 따른 수침출 공정에 의한 리튬의 회수 연구)

  • Sung-Ho Joo;Dong Ju Shin;Dongseok Lee;Shun Myung Shin
    • Resources Recycling
    • /
    • v.32 no.1
    • /
    • pp.42-49
    • /
    • 2023
  • The glass ceramic secondary resource containing Li-Al-Si is used in inductor, fireproof glass, and transparent cookware and accounts for 14% of the total consumption of Li, which is the second most widely used after Li-ion batteries. Therefore, new Li resources should be explored when the demand for Li is exploding, and extensive research on Li recovery is needed. Herein, we recovered Li from fireproof Li-Al-Si glass ceramic, which is a new secondary resource containing Li. The fireproof glass among all Li-Al-Si glass ceramics was used as raw material that contained 1.5% Li, 9.4% Al, and 28.9% Si. The process for recovering Li from the fireproof glass was divided into two parts: (1) calcium salt roasting and (2) water leaching. In calcium salt roasting, a sample of fireproof glass was crushed and ground below 325 mesh. The leaching efficiency was compared based on the presence or absence of heat treatment of the fireproof glass. Moreover, the leaching rates based on the input ratios of calcium salt, Li-Al-Si glass, and ceramics and the leaching process based on calcium salt roasting temperatures were compared. In water leaching, the leaching and recovery rates of Li based on different temperatures, times, solid-liquid ratios, and number of continuous leaching stages were compared. The results revealed that fireproof glass ceramics containing Li-Al-Si should be heat treated to change phase to beta-type spodumene. CaCO3 salt should be added at a ratio of 6:1 with glass ceramics containing Li-Al-Si, and then leached 4 times or more to achieve a recovery efficiency of Li over 98% from a solution containing 200 mg/L of Li.

The Effect of Electrochemical Treatment in Lowering Alkali Leaching from Cement Paste to an Aquatic Environment: Part 1- Leachability of Alkali Ions (전기화학적 기법을 통한 시멘트페이스트의 수중노출에 따른 알칼리이온 침출저감 효과: Part 1- 알칼리이온의 침출능)

  • Bum-Hee Youn;Ki-Yong Ann
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.2
    • /
    • pp.138-144
    • /
    • 2023
  • In this study, the effect of electrochemical treatment in mitigating alkali leaching into an aquatic environment was investigated. To modify the surface of cement paste, 1000 mA/m2 of the direct current was passed through anodic graphite to the external mesh for 4 weeks. Then, the cement paste specimen was exposed to still water in air-tight condition to prevent natural healing of alkali leaching in the water. For 100 days of monitoring in water, the pH value was marginally increased at the electrochemical treatment, while control specimen ranked to the even higher pH accounting for 13.2 in the pH. Moreover, after the pH monitoring, the pH profile for the paste specimen indicated that the electrochemical treatment was effective in securing the higher alkalinity of cement matrix. The water obtained from alkali leaching process, was used to ecological test for Daphnia magna. It was evident that the electrochemical treatment had minimal adverse effect on ecological impact, while control specimen mostly immobilized the standard Daphnia magna.

The Effects of Kinetics on the Leaching Behavior of Heavy Metals in Tailings-Water Interaction (광미-물 상호반응에서 반응시간이 중금속 용출에 미치는 영향)

  • Kang Min-Ju;Lee Pyeong-Koo;Kim Sang-Yeon
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.1
    • /
    • pp.23-36
    • /
    • 2006
  • Experimental leaching of tailings was performed as a function of times (1, 2, 4, 7, 14, 21 and 30 days) in the laboratory using reaction solutions equilibrated to three different pH set-points (pHs 1,3 and 5). The initial pHs of 5 and 3 stabilized at either 4.6-6.1 or 2.8-3.5 in 2 days and decrease gradually with time afterwards. The results of the leaching tests indicate that the significant increase in the sulfate concentrations and in acidity after 7 days of leaching results from the oxidation of sulfide minerals. There were no significant variations in the extractable Pb found in the leach solutions of pH 5 and 3 within the reaction time (1-30 days), while Zn, Cd and Cu concentrations tend to significantly increase with time. In tailings leaching at an initial pH=1, two trends were observed: i) The 'Zn-type' (Zn, Cd and Cu), with increasing concentrations between days 1 and 30, corresponding to the expected trend when continuous dissolution is the dominant process, ii) the 'Pb-type' (Pb), with decreasing concentrations over time, suggesting rapid dissolution of a Pb source followed by the precipitation of 'anglesite' in relation to the large increase in dissolved sulfates. The high sulfate concentrations were coupled with high concentrations of released Fe, Zn and Cd. Release of Zn and Cd and acidity from these leaching experiments can potentially pose adverse impact to surface and groundwater qualities in the surrounding environment. The kinetic problems could be the important factor which leads to increasing concentrations of trace metals in the runoff water.

Study on Selective Lithium Leaching Effect on Roasting Conditions of the Waste Electric Vehicle Cell Powder (폐전기차 셀분말의 열처리 조건에 따른 선택적 리튬침출 연구)

  • Jung, Yeon Jae;Son, Seong Ho;Park, Sung Cheol;Kim, Yong Hwan;Yoo, Bong Young;Lee, Man Seung
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.79-86
    • /
    • 2019
  • Recently, the use of lithium ion battery(LIB) has increased. As a result, the price of lithium and the amount spent lithium on ion battery has increased. For this reason, research on recycling lithium in waste LIBs has been conducted1). In this study, the effect of roasting for the selective lithium leaching from the spent LIBs is studied. Chemical transformation is required for selective lithium leaching in NCM LiNixCoyMnzO2) of the spent LIBs. The carbon in the waste EV cell powder reacts with the oxygen of the oxide at high temperature. After roasting at 550 ~ 850 ℃ in the Air/N2 atmosphere, the chemical transformation is analysed by XRD. The heat treated powders are leached at a ratio of 1:10 in D.I water for ICP analysis. As a result of XRD analysis, Li2CO3 peak is observed at 700 ℃. After the heat treatment at 850 ℃, a peak of Li2O was confirmed because Li2CO3 is decomposed into Li2O and CO2 over 723 ℃. The produced Li2O reacted with Al at high temperature to form LiAlO2, which does not leach in D.I water, leading to a decrease in lithium leaching ratio. As a result of lithium leaching in water after heat treatment, lithium leaching ratio was the highest after heat treatment at 700 ℃. After the solid-liquid separation, over 45 % of lithium leaching was confirmed by ICP analysis. After evaporation of the leached solution, peak of Li2CO3 was detected by XRD.

Experimental Study of Waste Tire Powder-Added Lightweight Soil as Flowable Backfill (유동성 뒷채움재인 폐타이어 혼합경량토에 대한 실험적 연구)

  • Kim, Yun-Tae;Kang, Hyo-Sub
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.112-118
    • /
    • 2008
  • The purpose of this study was to determine the engineering and environmental properties of the waste tire powder-added lightweight soil (TLS) used as flowable backfill. The TLS used in this experiment consisted of dredged soil, bottom ash, waste tire powder and cement. Test specimens were prepared with various contents of waste tire powder ranging from 0% to 100% at 25% intervals and water contents ranging from 140% to 200% by the weight of the dry dredged soil. Several series of unconfined compression tests, flow tests, and leaching tests were carried out. Experimental results for the TLS indicated that the unconfined compressive strength, secant modulus (), and unit weight of the TLS decreased with an increase in waste tire powder content. However, as the waste tire powder content increased, the stress-strain relationship of the TLS showed more ductile behavior rather than brittle behavior. The flow value increased with an increase in water content, but decreased with an increase in waste tire powder content. The result of the leaching test showed that the leaching amounts of heavy metals were lower than the permitted limits suggested by the Ministry of Environment.

Emission Characteristics of Metal Elements from a MSW Incinerator (도시폐기물 소각시설에서의 금속배출특성 연구)

  • Kim, Ki-Heon;Kim, Sam-Cwan;Song, Geum-Ju;Seo, Yong-Chil
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • The behavior and characteristics of heavy metals at different streams in a MSWI(Municipal Solid Waste Incinerator) with a capacity of 100tonnes/day were investigated by measuring the concentration of heavy metals and gases and analyzing their leaching data from ashes. Metal components of Cr, Cu, Cd and Pb were in higher concentrations in the fly ashes collected after the water spray tower than in the bottom ashes. It was due to condensation by a lower temperature with water spray cooling. Metal contents in the bottom ash became higher for finer particles as expected. The mass balance of heavy metals in different stream was estimated from the analyzed data in bottom ash and collected dusts at different locations. For the lower volatility of metals such as Pb, Cu, Cr, 88-97% of them remained in the bottom ash, while Cd and Hg escaped from the combustor with remaining in bottom ash of 18.4 and 0.8%, respectively. In most cases the leaching rate of fly ash showed higher values than that of bottom ash, with the their average acidities of 9.8 and 11.9 respectively.

  • PDF