• 제목/요약/키워드: Water heater

검색결과 352건 처리시간 0.031초

2단 응축 히트펌프 온수시스템의 사이클 해석 및 성능분석 (Performance of Heat Pump Water Heater with Dual Condenser)

  • 유영선;김영중;강금춘;백이;윤진하;강연구;이형모
    • Journal of Biosystems Engineering
    • /
    • 제31권5호
    • /
    • pp.423-429
    • /
    • 2006
  • The heat pump water heater developed in this research consisted of one evaporator, one compressor, 1st condenser, 2nd condenser, one expansion valve, one water tank, one recirculation circuit and etc. The performance of heat pump water heater was tested and analyzed. The quantities of output water changed linearly from 2380 to $660{\ell}/h$, and the output water temperature changed curvedly from 29.9 to $44.5^{\circ}C$ when the opening rate of recirculation valve changed from 0 to 100%. The COP of heat pump water heater increased from 3.0 to 3.8 when the quantities of output water changed from 660 to $2380{\ell}/h$. When the temperature distributions of water tank were measured during 50 minutes after turning on the heat pump, the temperature stratification by the level appeared apparently. When the inlet water temperature changed from 30 to$50^{\circ}C$, the output energy of heat pump hardly changed. The surface area of double pipe heat exchanger changed from 0.429 to $6.254m^2$ when the compressor capacity increased from 1.0 to 50.0 PS.

PERFORMANCE EVALUATION OF BUBBLE PUMP USED IN A PASSIVE SOLAR WATER HEATER SYSTEM

  • ;박기태;정한식;정효민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2309-2314
    • /
    • 2007
  • The application analysis of bubble pump on the domestic solar water heater system is presented. The system investigated in this study is a passive device, self pumping and self regulating. It was test to use the bubble pump on solar water heater system. The test experiment has been taken on the existed vacuum tube about the efficiency, working fluid temperature and pressure and circulated power. In order to check the working temperature and working pressure effectively, the bubble pump was test separated from the solar water heater. The equipment consists of the bubble pump, heater and heat exchanger. The main structure of bubble pump was design depend on the character of two phase flow. The complete system was instrumented to measure pressures, temperatures and flow-rates at various locations. The theory analysis of design bubble pump has been given and the experiment design has been included in the paper.

  • PDF

EXHAUST GAS HEAT RECOVERY SYSTEM FOR PLANT BED HEATING IN GREENHOUSE PRODUCTION

  • Kim, Y.J.;Ryou, Y.S.;Rhee, K.J.;Kang, G.C.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.III
    • /
    • pp.639-646
    • /
    • 2000
  • Hot air heater with light oil combustion is the most common heater for greenhouse heating in the winter season in Korea. However, since the heat efficiency of the heater is about 80%, considerable unused heat in the form of exhaust gas heat discharges to atmosphere. In order to capture this exhaust gas heat a heat recovery system for plant bed heating in the greenhouse was built and tested in the hot air heating system of greenhouse. The system consists of a heat exchanger made of copper pipes, ${\phi}\;12.7{\times}0.7t$ located inside the rectangular column of $330{\times}330{\times}900mm$, a water circulation pump, circulation plastic pipe and a water tame The total heat exchanger area is $1.5m^2$, calculated considering the heat exchange amount between flue gas and water circulated in the copper pipes. The system was attached to the exhaust gas path. The heat recovery system was designed as to even recapture the latent heat of flue gas when exposing to low temperature water in the heat exchanger. According to performance test it can recover 45,200 to 51,000kJ/hr depending on the water circulation rates of 330 to $690{\ell}$/hr from the waste heat discharged. The exhaust gas temperature left from the heat exchanger dropped to $100^{circ}C$ from $270^{circ}C$ by the heat exchange between the water and the flue gas, while water gained the difference and temperature increased to $38^{circ}C$ from $21^{circ}C$ at the water flow rate of $690{\ell}$/hr. And, the condensed water amount varies from 16 to $43m{\ell}$ at the same water circulation rates. This condensing heat recovery system can reduce boiler fuel consumption amount in a day by 34% according to the feasibility study of the actual mimitomato greenhouse. No combustion load was observed in the hot air heater.

  • PDF

복합형 태양열 가열기의 일일 운전 특성 및 축열 성능에 관한 연구 (A Study on Thermal Storage Performance and Characteristics of Daily Operation of a Hybrid Solar Air-Water Heater)

  • 최휘웅;파쿠르 로커만;윤정인;손창효;최광환
    • 한국태양에너지학회 논문집
    • /
    • 제35권3호
    • /
    • pp.73-79
    • /
    • 2015
  • In this study, a thermal storage performance and characteristics of daily operation were investigated when the air and the liquid were heated simultaneously by a hybrid solar air-water heater that can make hot water as well as heated air. The hybrid solar air-water heater is kind of a flat plate solar collector that can make hot water and heated air by installing air channel beneath absorber plate of traditional flat plate solar collector for hot water. As a result of daily operation, maximum water temperature reached in a thermal storage was shown $44^{\circ}C$ on 73kg/h of air mass flow rate and about $40^{\circ}C$ on 176kg/h of air mass flow rate. Thus, the necessity of heating water in thermal storage by operating only liquid side was confirmed when the temperature of liquid in thermal storage is lower than we need. In case of efficiency investigated on daily operation, the thermal efficiency of the liquid side was decreased with increment of the inlet liquid temperature and decrement of the solar radiation, but efficiency of the air side was increased with increment of inlet liquid temperature difference as the traditional solar air heater. Total thermal efficiency of the collector was shown from 65.85% to 78.23% and it was decreased with increment of the inlet liquid temperature and decrement of solar radiation same as the traditional system.

Numerical investigation of two-phase natural convection and temperature stratification phenomena in a rectangular enclosure with conjugate heat transfer

  • Grazevicius, Audrius;Kaliatka, Algirdas;Uspuras, Eugenijus
    • Nuclear Engineering and Technology
    • /
    • 제52권1호
    • /
    • pp.27-36
    • /
    • 2020
  • Natural convection and thermal stratification phenomena are found in large water pools that are being used as heat sinks for decay heat removal from the reactor core using passive heat removal systems. In this study, the two-phase (water and air) natural convection and thermal stratification phenomena with conjugate heat transfer in the rectangular enclosure were investigated numerically using ANSYS Fluent 17.2 code. The transient numerical simulations of these phenomena in the full-scale computational domain of the experimental facility were performed. Generation of water vapour bubbles around the heater rod and evaporation phenomena were included in this numerical investigation. The results of numerical simulations are in good agreement with experimental measurements. This shows that the natural convection is formed in region above the heater rod and the water is thermally stratified in the region below the heater rod. The heat from higher region and from the heater rod is transferred to the lower region via conduction. The thermal stratification disappears and the water becomes well mixed, only after the water temperature reaches the saturation temperature and boiling starts. The developed modelling approach and obtained results provide guidelines for numerical investigations of thermal-hydraulic processes in the water pools for passive residual heat removal systems or spent nuclear fuel pools considering the concreate walls of the pool and main room above the pool.

조수기용 증기분사 열교환기에 대한 모델링 (Modeling of Steam Injection Heater for Fresh Water Generator)

  • 홍철현;이억수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권6호
    • /
    • pp.877-885
    • /
    • 2008
  • Steam injection heater is the most widely used method for fresh water generator throughout industry. This method is often chosen because of its simplicity. The steam bubbles condense and give up their heat to the surrounding liquid. Experimental study on steam injection heater has been performed in order to find the effect of major parameter. And conservation equation and Bernoulli obstruction theory are used for numerical simulation model of vapor flow-rate. Qualitative comparisons between simulations and measurements show a good agreement and the simulation models are thereby verified.

초음파 수첨가 연소에 의한 석유 홴 히터의 배기가스 특성 고찰 (An Investigation of Combustion Emission Characteristics of Kerosene Fan Heater with Addition of Water Droplets by Ultrasonic Atomizer)

  • 김장권;정규조
    • 동력기계공학회지
    • /
    • 제3권3호
    • /
    • pp.44-53
    • /
    • 1999
  • This study is concerned with the emission characteristics of kerosene fan heater, which is burned with kerosene and water droplets simultaneously in the burner, in order to prohibit the emissions of harmful exhaust gas and reduce smell caused by incomplete combustion, and the addition of water droplets to the conventional kerosene fan heater was performed by ultrasonic atomizer. For the investigation of this study, the measurement of exhaust gas components and exhaust gas temperature was carried out by using an automatic combustion gas analyser and $NO_x$ analyser, and the measurement of consumption weight of oil and water was obtained by using electric digital balance. Consequently, according as the water percent weight ratio of about $21{\sim}23%$ was supplied for this study, it was found that the combustion-generated $NO_x$ and CO emissions were reduced very largely, but the emissions of $O_2\;and\;CO_2$ and the temperature of exhaust gas were not changed.

  • PDF

세라믹 발열체기반 비저장식 순간 전기 온수기 개발 및 검증 (Design and Verification of Ceramic Heating Element-based Tankless Instant Electric Water Heater)

  • 안성수;김우현
    • 전자공학회논문지
    • /
    • 제53권11호
    • /
    • pp.151-159
    • /
    • 2016
  • 본 논문에서는 다량의 온수가 필요하지 않는 세면을 목적으로 개발된 세라믹 발열체 기반 비저장식 순간 전기온수기를 제안한다. 입력되는 물을 가열하여 온수로 출수시키는 히팅모듈은 유량센서를 이용하여 입력되는 물을 감지하고 세라믹 히팅 모듈을 동작시킨다. 히팅 모듈 내부는 분당 1.5리터로 입수되는 물의 온도 대비 약 $15^{\circ}C$정도로 가열된 온수로 입수 2초 내에 출수시키기 위해 1 path 유로로 설계하였고 또한 설계의 타당성을 검증하기 위해 히팅모듈 내부 물의 흐름과 온도변화에 대한 열유동해석을 수행하였다. 기본 설계를 기초로 내부에 막대형 세라믹 발열체 1개가 내장된 히팅모듈을 제작하였다. 히팅모듈 제작 후 3단계로 온도 세팅 기능을 가지는 온수기 시제품을 제작하였다. 제작된 시제품을 분당 1.5리터의 물을 공급하는 상수도관에 연결하고 출수되는 물의 온도 및 시간을 측정한 실험에서 물 공급 후 2초 후에 온수기 3단 기준으로 공급되는 물 온도 대비 $18.3^{\circ}C$로 가열된 온수를 출수할 수 있음을 확인하였다. 그리고 대기전력 1w 미만, 순간 전력도 일반가정에서의 허용범위를 넘지 않는다. 성능 측정 결과들을 통해 제안된 비저장식 순간 전기온수기가 겨울철 세면용으로 가정, 고속도로휴게소, 공장 등의 세면대에 적용이 가능함을 확인하였다.

태양에너지 시스템의 실증시험을 위한 모니터링 시스템 개발 (Development of monitoring system for demonstration test of solar energy system)

  • 양동조;김재열;오율권;김진흥;정낙규;조금배
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2005년도 전력전자학술대회 논문집
    • /
    • pp.723-726
    • /
    • 2005
  • The application of solar energy, in the field of alternative energy, was on the increase tendency. In the case of advanced nations, through continuous R&D, solar hot water heater with high efficiency has been used for the house and the industrial process on business, advanced nations were reached up the experimental stage of solar generation system. But, the actual circumstance of the domestic has been not accomplished the popularization of solar hot water heater and the settlement of it which is the fundamental stage of the solar energy usage. This trouble, the domestic was flooded with small enterprise for producing solar hot water heater, was caused by the popularization and the production without verification of performance. To supply the monitoring program for evaluating solar hot water heater, this research was purpose to improve the technical development of the enterprise for producing solar-heat hot-water-boiler and served as an aid for the enlargement and the popularization on solar energy.

  • PDF