• Title/Summary/Keyword: Water heater

Search Result 352, Processing Time 0.025 seconds

Numerical Investigation on the Urea Melting Characteristics with Coolant and Electric Heaters (냉각수 및 전기 가열 방식에 따른 요소수 해동 특성에 관한 수치해석 연구)

  • Lee, Seung Yeop;Kim, Man Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • A Urea-SCR(Selective Catalytic Reactor) system, which converts nitrogen oxides into nitrogen and water in the presence of a reducing agent, creates a major exhaust gas aftertreatment system for NOx reduction among other compounds. With regard to vehicle applications, a urea solution was chosen based on its eutectic composition of a 32.5wt% urea-water solution. An important advantage of this eutectic composition is that its melting point of $-11.7^{\circ}C$ is sufficiently low to avoid solidification in cold environments. However, the storage tanks must be heated separately in case of low ambient temperature levels to ensure a sufficient amount of liquid is available during scheduled start ups. In this study, therefore, a numerical investigation of three-dimensional unsteady heating problems analyzed to understand the melting processes and heat transfer characteristics including liquid volume fraction, temperature distributions, and temperature profiles. The investigations were performed using Fluent 6.3 commercial software that modeled coolant and electric heater models based on a urea solution. It is shown that the melting performance with the electric heater is higher than a coolant heater and is more efficient.

Development of having double-chamber in micro-bubble pump (두 개의 챔버를 갖는 마이크로 버블펌프의 개발)

  • 최종필;박대섭;반준호;김병희;장인배;김헌영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1186-1190
    • /
    • 2003
  • In this paper, a valveless bubble-actuated fluid micropump was has been developed and its performance was tested. The valveless micropump consists of the lower plate, the middle plate, the upper plate and a resistive heater. The lower plate includes the nozzle-diffuser elements and the double-chamber. Nozzle-diffuser elements and a double-chamber are fabricated on the silicon wafer by the DRIE(Deep Reactive Ion Etching) process. The lower plate also has inlet/outlet channels for fluid flow. The middle plate is made of glass and plays the role of the diaphragm. The chamber in the upper plate is filled with deionized water, and which contacts with the resistive heater. The resistive heater is patterned on a silicon substrate by Ti/Pt sputtering. Three plates and the resister heater are laminated by the aligner and bonded in the anodic bonder. Since the bubble is evaporated and condensed periodically in the chamber, the fluid flows from inlet to outlet with respect to the diffusion effect. In order to avoid backflow, the double chamber system is introduced. Analytical and experimental results show the validity of the developed double-chamber micropump.

  • PDF

Hydrodynamic effects of heater lengths on pool boiling critical heat flux (히터 길이가 수조비등 임계열유속에 미치는 수력학적 영향)

  • Su Cheong Park;Do Yeon Kim;Seon Ho Choi;Chang Hoon Lee;Younghun Lim;Chi Young Lee;Yeon Won Lee;Dong In Yu
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.1
    • /
    • pp.67-73
    • /
    • 2023
  • In the study, pool boing critical heat flux (CHF) was experimentally investigated depending on the length of heaters. A smooth silicon oxide surfaces are used as the boiling surfaces. As the results of pool boiling experiments based on distilled water in ambient pressure condition, the CHF decreased as the length of the heater increased. By the high speed imaging, it was shown that the number of vapor columns increased as the length of the heater increased. Comparing the number of vapor columns and the CHF according to the heater length, the change in the CHF according to the heater length was analyzed based on the hydrodynamic instability.

An Empirical Study on the Thermal Performance and Dynamic Behavior of Wall Integrated Thermosiphon Solar Water Heater (벽체일체형 자연순환 태양열온수기의 동적거동과 열성능에 관한 실증연구)

  • Baek, Nam-Choon;Kim, Sung-Bum;Shin, U-Cheul
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.6
    • /
    • pp.25-35
    • /
    • 2016
  • In this study, the evaluation of the dynamic behavior and thermal performance of the "Façade integrated Natural circulation Solar Water Heating System" installed in the residential house was carried out. Experimental tests were performed during the all year around in the rural houses of $166m^2$ in size. Facade integrated solar collector of $5m^2$ were installed on the south-facing. Electrical heater of 1 kW capacity as an auxiliary heater was installed at the upper part of the heat storage tank. The analyzing results are as follows. (1) Monthly average solar fraction was 51 to 87% and yearly average value is 64%. (2) Hot water supply temperature in December which has the lowest solar altitude is 37 to $76^{\circ}C$. The highest working fluid temperature of solar collector in this period was below $84^{\circ}C$. The temperature difference of working fluid between the collector inlet and outlet has been shown to be around 9 to $26^{\circ}C$. (3) Overheating which is one of the biggest problems during summer did not appear at all, but rather had hot water supply temperature is rather low as $30{\sim}47^{\circ}C$ in summer than winter, which is supplied by a small solar load. The solar collecting temperature has been shown to maintain below $55^{\circ}C$. (5) The thermal performance of Facade integrated solar collector can be increase due to the reduction of heat loss to the back of the collector wall integration of the collector is reduced. As a conclusion, Facade integrated natural circulation type Solar Water Heating System is a well-functioning without any pumps or controllers, and it was found that the disadvantages of conventional solar water heaters, hot water or hot water system can be greatly improved.

Performance Evaluation of Hybrid Solar Air-Water Heater when the Heated Air is used as Inlet Air during Air and Water is Heated Simultaneously (가열 공기 유입에 따른 복합형 태양열 가열기 공기-물 제조 성능에 관한 연구)

  • Choi, Hwi-Ung;Yoon, Jung-In;Son, Chang-Hyo;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.5
    • /
    • pp.21-29
    • /
    • 2015
  • In this study, the performance of hybrid solar air-water heater when the heated air was used as inlet air was investigated during air and liquid were heated simultaneously. Temperature difference between inlet air and ambient was set as $0^{\circ}C$, $13^{\circ}C$ and $22^{\circ}C$ and it was maintained during the daily operation. As a result, thermal efficiency of liquid heating was increased when the inlet air temperature was increased and heat gain of the water in heat storage tank was also increased with increment of temperature difference between inlet air and ambient temperature. On the contrary to this, the decrement of air heating efficiency and total efficiency of collector was confirmed with increment of inlet air temperature and it is considered that heat gain of liquid side is lower than heat loss of air side that occurring by using heated air as inlet air of collector. So, from these results, maximum temperature that the liquid in heat storage tank can reach was expected to increase if the return air or any heated air was used as inlet air. But air and total efficiency of hybrid solar air-water is decreased, so using outdoor air as inlet air is considered as better way on perspective of using of solar thermal energy by hybrid solar collector. However, it is hard to conclude that using outdoor air is better than heated air on the perspective of energy saving of building because the performance of heat storage performance was increased even air and total thermal efficiency was decreased, so the necessity of more profound consideration about these result in further research was confirmed for putting the hybrid solar air-water heater to practical use.

Experimental study on the role of nanoparticle deposition in pool boiling CHF enhancement using nanofluids (나노유체 이용한 풀비등 임계열유속 증가에서 나노입자 유착물의 영향에 관한 실험적 연구)

  • Kim, Hyung-Dae;Kim, Seon-Tae;Ahn, Ho-Seon;Kim, Moo-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1906-1911
    • /
    • 2007
  • It has been well known that pool boiling CHF in nanofluids compared to pure water significantly increase due to the deposition of nanoparticles on heater surface. This study concerns the characteristics of the nanoparticle deposition layer and its influence on CHF. Pool boiling experiments were carried out with 0.01vol.% water-$TiO_2$ nanofluids to obtain various nanoparticle-deposited heaters. CHF on the prepared heaters was measured during pool boiling in pure water. The heater surfaces were visualized using scanning electron microscope (SEM) and also characterized using contact angle and capillarity. The results showed that the CHF enhancement in nanofluids was completely dependent upon the structural and physicochemical characteristics of the nanoparticle deposition layer.

  • PDF

Installtion of Solar Hot Water Heater (태양열온수기 시공설치)

  • Lee, Sung-Soo
    • Solar Energy
    • /
    • v.18 no.2
    • /
    • pp.51-67
    • /
    • 1998
  • In this paper, various solar systems are introduced according to usage pattern considering national weather condition and hot water comsumption pattern. First, basic principle and components of solar hot heater are presented, and then operational machanism of various solar hot water systems are presented according to the case of domestic and industrial use with network of piping.

  • PDF

A Study on Performance Analysis of the Bubble Pump in Solar Water Heater System (태양열 온수기 시스템에 적용된 기포펌프의 성능평가에 대한 연구)

  • Lee, Kwang-Sung;Li, Xuesong;Jin, Zhenhua;Jeong, Hyo-Min;Chung, Han-Shik
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2310-2315
    • /
    • 2008
  • In this paper, study on performance analysis of bubble pump on the domestic solar water heater system is presented. Device of this experiment is consisted of bubble pump, solar collector and heat exchanger. At the mean time, this system have attached temperature sensors and pressure sensors at bubble pump. In addition, the flow meter was installed at outlet of heat exchanger. And then result of experimental study, average value of the heat exchange amount in heat exchanger was about 7.9kcal/hr, the maximum value of the heat amount in water tank($0.4m^3$) was 489.7kcal/hr and the maximum value of the mass flow rate in bubble pump was about $0.5{\ell}/min$.

  • PDF

A Comparative Study on the Energy Efficiency due to the Capacity of Gas Boiler (가스온수가열기의 용량에 따른 에너지효율성 비교 연구)

  • Kim, Seong Jung;Woo, In sung
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.2
    • /
    • pp.229-234
    • /
    • 2015
  • Depending on the living styles, the types of energy consumed by households have changed, and the consumption has increased rapidly. Consequently, those have led to environmental issues, such as exhaustion of energy and the climate changes. As one of solutions to such issues, energy efficiency can be approached. Therefore, in this study, the gas water heater(115S type Rheem products) that made in Germany and obtain hot water using gas as a heat source is selected. a $1.0m^3$ water tank with a 6kW electronic heater is installed and a water temperature and pressure is maintain constantly also thermometer is injected. Two of gas meter, one of pressure regulator and three of time measurement devices are installed in a combustion facility and fuelling facility with a magnet valve so it can observe and record combustion reactions. Quantity of hot water that heated by boiler is recorded using a quantity measurement tank, and have been heated by the boiler have been to record and measure the amount and utilized the data acquired through measurement of all factors that are applied to acquire hot water in order to calculate the use rate of final energy. In conclusion, this researcher drew the economic strong points of the hot water generated by gas.

Experimental Study for Thermal Performance of Hybrid Air-Water Heater Using Solar Energy during Heating Medium Working Simultaneously (복합형 태양열 가열기 열매체 동시운전시의 열적 성능에 관한 실험적 연구)

  • Choi, Kwang-Hwan;Yoon, Jung-In;Son, Chang-Hyo;Choi, Hwi-Ung;Kim, Bu-Ahn
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.3
    • /
    • pp.115-121
    • /
    • 2014
  • With increment on interesting about improving renewable energy efficiency, many research have been conducted and the research about hybrid air-water heater using solar energy that can make heating air and hot water has been conducted also. In this experiment, the temperature difference and thermal efficiency were investigated when two heating medium(air and liquid) was working simultaneously. As a result, thermal efficiency showed 44% to 88% when these heating medium was working simultaneously depending on operation condition and it is better than traditional solar collector. Also possibility of application into building equipment also was confirmed based on temperature and thermal efficiency. But necessity of additional studies about proper operation condition according to purpose of use and heat load was confirmed because change of thermal efficiency by air velocity and flux of liquid was shown a huge difference.