• Title/Summary/Keyword: Water estimation models

Search Result 355, Processing Time 0.031 seconds

Estimation of Long-term Water Demand by Principal Component and Cluster Analysis and Practical Application (주성분분석과 군집분석을 이용한 장기 물수요예측과 활용)

  • Koo, Ja-Yong;Yu, Myung-Jin;Kim, Shin-Geol;Shim, Mi-Hee;Akira, Koizumi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.870-876
    • /
    • 2005
  • The multiple regression models which have two factors(population and commercial area) have been used to forecast the water demand in the future. But, the coefficient of population had a negative value because proper regional classification wasn't performed, and it is not reasonable because the population must be a positive factor. So, the regional classification was performed by principal component and cluster analysis to solve the problem. 6 regional characters were transformed into 4 principal components, and the areas were divided into two groups according to cluster analysis which had 4 principal components. The new regression models were made by each group, and the problem was solved. And, the future water demands were estimated by three scenarios(Active, moderate, and passive one). The increase of water demand ore $89.034\;m^3/day$ in active plat $49,077\;m^3/day$ in moderate plan, and $19,996\;m^3/day$ in passive plan. The water supply ability as scenarios is enough in water treatment plant, however, 2 reservoirs among 4 reservoirs don't have enough retention time in all scenarios.

Development of Soil Erosion Analysis Systems Based on Cloud and HyGIS (클라우드 및 HyGIS기반 토양유실분석 시스템 개발)

  • Kim, Joo-Hun;Kim, Kyung-Tak;Lee, Jin-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.4
    • /
    • pp.63-76
    • /
    • 2011
  • This study purposes to develop a model to analyze soil loss in estimating prior disaster influence. The model of analyzing soil loss develops the soil loss analysis system on the basis of Internet by introducing cloud computing system, and also develops a standalone type in connection with HyGIS. The soil loss analysis system is developed to draw a distribution chart without requiring a S/W license as well as without preparing basic data such as DEM, soil map and land cover map. Besides, it can help users to draw a soil loss distribution chart by applying various factors like direct rain factors. The tools of Soil Loss Anaysis Model in connection with HyGiS are developed as add-on type of GMMap2009 in GEOMania, and also are developed to draw Soil Loss Hazard Map suggested by OECD. As a result of using both models, they are developed very conveniently to analyze soil loss. Hereafter, these models will be able to be improved continuously through researches to analyze sediment a watershed outlet and to calculate R value using data of many rain stations.

Application of Jackknife Method for Determination of Representative Probability Distribution of Annual Maximum Rainfall (연최대강우량의 대표확률분포형 결정을 위한 Jackknife기법의 적용)

  • Lee, Jae-Joon;Lee, Sang-Won;Kwak, Chang-Jae
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.10
    • /
    • pp.857-866
    • /
    • 2009
  • In this study, basic data is consisted annual maximum rainfall at 56 stations that has the rainfall records more than 30years in Korea. The 14 probability distributions which has been widely used in hydrologic frequency analysis are applied to the basic data. The method of moments, method of maximum likelihood and probability weighted moments method are used to estimate the parameters. And 4-tests (chi-square test, Kolmogorov-Smirnov test, Cramer von Mises test, probability plot correlation coefficient (PPCC) test) are used to determine the goodness of fit of probability distributions. This study emphasizes the necessity for considering the variability of the estimate of T-year event in hydrologic frequency analysis and proposes a framework for evaluating probability distribution models. The variability (or estimation error) of T-year event is used as a criterion for model evaluation as well as three goodness of fit criteria (SLSC, MLL, and AIC) in the framework. The Jackknife method plays a important role in estimating the variability. For the annual maxima of rainfall at 56 stations, the Gumble distribution is regarded as the best one among probability distribution models with two or three parameters.

Development of a hybrid regionalization model for estimation of hydrological model parameters for ungauged watersheds (미계측유역의 수문모형 매개변수 추정을 위한 하이브리드 지역화모형의 개발)

  • Kim, Youngil;Seo, Seung Beom;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.8
    • /
    • pp.677-686
    • /
    • 2018
  • There remain numerous ungauged watersheds in Korea owing to limited spatial and temporal streamflow data with which to estimate hydrological model parameters. To deal with this problem, various regionalization approaches have been proposed over the last several decades. However, the results of the regionalization models differ according to climatic conditions and regional physical characteristics, and the results of the regionalization models in previous studies are generally inconclusive. Thus, to improve the performance of the regionalization methods, this study attaches hydrological model parameters obtained using a spatial proximity model to the explanatory variables of a regional regression model and defines it as a hybrid regionalization model (hybrid model). The performance results of the hybrid model are compared with those of existing methods for 37 test watersheds in South Korea. The GR4J model parameters in the gauged watersheds are estimated using a shuffled complex evolution algorithm. The variation inflation factor is used to consider the multicollinearity of watershed characteristics, and then stepwise regression is performed to select the optimum explanatory variables for the regression model. Analysis of the results reveals that the highest modeling accuracy is achieved using the hybrid model on RMSE overall the test watersheds. Consequently, it can be concluded that the hybrid model can be used as an alternative approach for modeling ungauged watersheds.

Improving Initial Abstraction Method of NRCS-CN for Estimating Effective Rainfall (유효우량 산정을 위한 NRCS-CN 모형의 초기손실량 산정방법 개선)

  • Park, Dong-Hyeok;Ajmal, Muhammad;Ahn, Jae-Hyun;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.6
    • /
    • pp.491-500
    • /
    • 2015
  • In order to improve the runoff estimation accuracy of the Natural Resources Conservation Service (NRCS) curve number (CN) model, this study incorporated rainfall and maximum potential retention as contributors for initial abstraction. The modification was proposed based on 658 rank-order data of rainfall and subsequent runoff from 15 watersheds. The NRCS-CN model (M1), one of its inspired modified model (M2), and the proposed model (M3) were analyzed employing different CN approaches. Using tabulated, calculated and least squares fitted CNs ($CN_T$, $CN_C$, $CN_{LSF}$, respectively), the models' performances were evaluated based on Root Mean Square Error (RMSE), Nash-Sutcliffe Efficiency (NSE), and Percent Bias (PBIAS). Applications of model M1, M2, and M3, respectively exhibited watershed cumulative mean [RMSE (23.60, 18.12, 16.04), NSE (0.54, 0.73, 0.79), and PBIAS (36.54, 20.25, 12.00)]. Similarly, using CNC (for M1 and M2 model) and $CN_{LSF}$ (for M3 model), the performance of three models respectively were assessed based on watershed cumulative mean [RMSE (17.17, 15.88, 13.82), NSE (0.76, 0.80, 0.85), and PBIAS (3.06, 4.47, 0.11)]. The proposed model (M3) that linked all of the NRCS-CN variants showed more statistically significant agreement between the observed and estimated data.

Estimation of the Terminal Velocity of the Worst-Case Fragment in an Underwater Torpedo Explosion Using an MM-ALE Finite Element Simulation (MM-ALE 유한요소 시뮬레이션을 이용한 수중 어뢰폭발에서의 최악파편의 종단속도 추정)

  • Choi, Byung-Hee;Ryu, Chang-Ha
    • Explosives and Blasting
    • /
    • v.37 no.3
    • /
    • pp.13-24
    • /
    • 2019
  • This paper was prepared to investigate the behavior of fragments in underwater torpedo explosion beneath a frigate or surface ship by using an explicit finite element analysis. In this study, a fluid-structure interaction (FSI) methodology, called the multi-material arbitrary Lagrangian-Eulerian (MM-ALE) approach in LS-DYNA, was employed to obtain the responses of the torpedo fragments and frigate hull to the explosion. The Euler models for the analysis were comprised of air, water, and explosive, while the Lagrange models consisted of the fragment and the hull. The focus of this modeling was to examine whether a worst-case fragment could penetrate the frigate hull located close (4.5 m) to the exploding torpedo. The simulation was performed in two separate steps. At first, with the assumption that the expanding skin of the torpedo had been torn apart by consuming 30% of the explosive energy, the initial velocity of the worst-case fragment was sought based on a well-known experimental result concerning the fragment velocity in underwater bomb explosion. Then, the terminal velocity of the worst-case fragment that is expected to occur before the fragment hit the frigate hull was sought in the second step. Under the given conditions, the possible initial velocities of the worst-case fragment were found to be very fast (400 and 1000 m/s). But, the velocity difference between the fragment and the hull was merely 4 m/s at the instant of collision. This result was likely to be due to both the tremendous drag force exerted by the water and the non-failure condition given to the frigate hull. Anyway, at least under the given conditions, it is thought that the worst-case fragment seldom penetrate the frigate hull because there is no significant velocity difference between them.

TGC-based Fish Growth Estimation Model using Gaussian Process Regression Approach (가우시안 프로세스 회귀를 통한 열 성장 계수 기반의 어류 성장 예측 모델)

  • Juhyoung Sung;Sungyoon Cho;Da-Eun Jung;Jongwon Kim;Jeonghwan Park;Kiwon Kwon;Young Myoung Ko
    • Journal of Internet Computing and Services
    • /
    • v.24 no.1
    • /
    • pp.61-69
    • /
    • 2023
  • Recently, as the fishery resources are depleted, expectations for productivity improvement by 'rearing fishery' in land farms are greatly rising. In the case of land farms, unlike ocean environments, it is easy to control and manage environmental and breeding factors, and has the advantage of being able to adjust production according to the production plan. On the other hand, unlike in the natural environment, there is a disadvantage in that operation costs may significantly increase due to the artificial management for fish growth. Therefore, profit maximization can be pursued by efficiently operating the farm in accordance with the planned target shipment. In order to operate such an efficient farm and nurture fish, an accurate growth prediction model according to the target fish species is absolutely required. Most of the growth prediction models are mainly numerical results based on statistical analysis using farm data. In this paper, we present a growth prediction model from a stochastic point of view to overcome the difficulties in securing data and the difficulty in providing quantitative expected values for inaccuracies that existing growth prediction models from a statistical point of view may have. For a stochastic approach, modeling is performed by introducing a Gaussian process regression method based on water temperature, which is the most important factor in positive growth. From the corresponding results, it is expected that it will be able to provide reference values for more efficient farm operation by simultaneously providing the average value of the predicted growth value at a specific point in time and the confidence interval for that value.

Trend Analyses of Monthly Precipitation in Jeolla According to Climate Change Scenarios Using an Innovative Polygon Trend Analysis (혁신적 다각 경향성 분석을 이용한 기후변화 시나리오에 따른 전라도 월 강수량의 경향성 분석)

  • Hong, Dahee;Kim, Soukwoo;Cho, Hyeonseon;Yoo, Jiyoung;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.315-328
    • /
    • 2024
  • Precipitation is a crucial meteorological variable widely used as essential input data in most hydrological models. However, due to climate change, there is an escalating precipitation variability. Trend analysis plays an important role in planning and operating water resources systems. As recently developed, Innovative Polygon Trend Analysis (IPTA) is useful in identifying and and analyzing the trends of hydrologic variables. In this study, the IPTA was applied to monthly precipitation data obtained from 13 meteorological observatories in Jeolla province, along with synthesized precipitation data according to Shared Socioeconomic Pathways (SSP) scenarios. The trend results were compared those obtained from the Mann-Kendall test and the Sen's slope estimation which are generally used in practice. The results revealed monthly precipitations from February to July and November had increasing trends, and monthly precipitation in October had a decreasing trend. IPTA, Mann-Kendall test, and Sen's slope estimation detected trends in 75.00 %, 5.13 %, and 5.13 % of 156(13 stations × 12 months) time series of monthly precipitation, respectively, which indicates that the IPTA is more sensitive in trend detection compared to the Mann-Kendall test and Sen's slope estimation.

A Study to Develop Monthly Cover Management Factor Database for Monthly Soil Loss Estimation (월단위 토양유실가능추정치를 위한 지표피복인자의 산정 방안 연구)

  • Sung, Yun Soo;Jung, Yunghun;Lim, Kyoung Jae;Kim, Jonggun;Kim, Ki-Sung;Park, Seung Ki;Shin, Min Hwan;Kum, Dong Hyuk;Park, Youn Shik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.6
    • /
    • pp.23-30
    • /
    • 2016
  • Soil loss is an accompanying phenomenon of hydrologic cycle in watersheds. Both rainfall drops and runoff lead to soil particle detachment, the detached soil particles are transported into streams by runoff. Here, a sediment-laden water problem can be issued if soil particles are severely detached and transported into stream in the watershed. There is a need to estimate or simulate soil erosion in watersheds so that an adequate plan to manage soil erosion can be established. Universal Soil Loss Equation (USLE), therefore, was developed and modified by many researchers for their watersheds, moreover the simple model, USLE, has been employed in many hydrologic models for soil erosion simulations. While the USLE has been applied even in South-Korea, the model is often regarded as being limited in applications for the watersheds in South-Korea since monthly conditions against soil erosion on soil surface are not capable to represent. Thus, the monthly USLE factors against soil erosion, soil erodibility and crop management factors, were established for four major watersheds, which are Daecheong-dam, Soyang-dam, Juam-dam, and Imha-dam watersheds. The monthly factors were established by recent fifteen years from 2000 to 2015. Five crops were selected for the monthly crop management factor establishments. Soil loss estimations with the modified factors were compared to conventional approach that is average annual estimations. The differences ranged from 9.3 % (Juam-dam watershed) to 28.1 % (Daecheong-dam watershed), since the conventional approaches were not capable of seasonally and regionally different conditions.

Analysis of SWAT Simulated Errors with the Use of MOE Land Cover Data (환경부 토지피복도 사용여부에 따른 예측 SWAT 오류 평가)

  • Heo, Sung-Gu;Kim, Nam-Won;Yoo, Dong-Sun;Kim, Ki-Sung;Lim, Kyoung-Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.194-198
    • /
    • 2008
  • Significant soil erosion and water quality degradation issues are occurring at highland agricultural areas of Kangwon province because of agronomic and topographical specialities of the region. Thus spatial and temporal modeling techniques are often utilized to analyze soil erosion and sediment behaviors at watershed scale. The Soil and Water Assessment Tool (SWAT) model is one of the watershed scale models that have been widely used for these ends in Korea. In most cases, the SWAT users tend to use the readily available input dataset, such as the Ministry of Environment (MOE) land cover data ignoring temporal and spatial changes in land cover. Spatial and temporal resolutions of the MOE land cover data are not good enough to reflect field condition for accurate assesment of soil erosion and sediment behaviors. Especially accelerated soil erosion is occurring from agricultural fields, which is sometimes not possible to identify with low-resolution MOD land cover data. Thus new land cover data is prepared with cadastral map and high spatial resolution images of the Doam-dam watershed. The SWAT model was calibrated and validated with this land cover data. The EI values were 0.79 and 0.85 for streamflow calibration and validation, respectively. The EI were 0.79 and 0.86 for sediment calibration and validation, respectively. These EI values were greater than those with MOE land cover data. With newly prepared land cover dataset for the Doam-dam watershed, the SWAT model better predicts hydrologic and sediment behaviors. The number of HRUs with new land cover data increased by 70.2% compared with that with the MOE land cover, indicating better representation of small-sized agricultural field boundaries. The SWAT estimated annual average sediment yield with the MOE land cover data was 61.8 ton/ha/year for the Doam-dam watershed, while 36.2 ton/ha/year (70.7% difference) of annual sediment yield with new land cover data. Especially the most significant difference in estimated sediment yield was 548.0% for the subwatershed #2 (165.9 ton/ha/year with the MOE land cover data and 25.6 ton/ha/year with new land cover data developed in this study). The results obtained in this study implies that the use of MOE land cover data in SWAT sediment simulation for the Doam-dam watershed could results in 70.7% differences in overall sediment estimation and incorrect identification of sediment hot spot areas (such as subwatershed #2) for effective sediment management. Therefore it is recommended that one needs to carefully validate land cover for the study watershed for accurate hydrologic and sediment simulation with the SWAT model.

  • PDF