• 제목/요약/키워드: Water erosion

Search Result 979, Processing Time 0.028 seconds

Performance evaluation of hyperspectral bathymetry method for morphological mapping in a large river confluence (초분광수심법 기반 대하천 합류부 하상측정 성능 평가)

  • Kim, Dongsu;Seo, Youngcheol;You, Hojun;Gwon, Yeonghwa
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.3
    • /
    • pp.195-210
    • /
    • 2023
  • Additional deposition and erosion in large rivers in South Korea have continued to occur toward morphological stabilization after massive dredging through the four major river restoration project, subsequently requiring precise bathymetry monitoring. Hyperspectral bathymetry method has increasingly been highlighted as an alternative way to estimate bathymetry with high spatial resolution in shallow depth for replacing classical intrusive direct measurement techniques. This study introduced the conventional Optimal Band Ratio Analysis (OBRA) of hyperspectral bathymetry method, and evaluated the performance in a domestic large river in normal turbid and flow condition. Maximum measurable depth was estimated by applying correlation coefficient and root mean square error (RMSE) produced during OBRA with cascadedly applying cut-off depth, where the consequent hyperspectral bathymetry map excluded the region over the derived maximum measurable depth. Also non-linearity was considered in building relation between optimal band and depth. We applied the method to the Nakdong and Hwang River confluence as a large river case and obtained the following features. First, the hyperspectal method showed acceptable performance in morphological mapping for shallow regions, where the maximum measurable depth was 2.5 m and 1.25 m in the Nakdong and Hwang river, respectively. Second, RMSE was more feasible to derive the maximum measurable depth rather than the conventional correlation coefficient whereby considering various scenario of excluding range of in situ depths for OBRA. Third, highly turbid region in Hwang River did not allow hyperspectral bathymetry mapping compared with the case of adjacent Nakdong River, where maximum measurable depth was down to half in Hwang River.

Studies on the Surface Charge Characteristics of Two Inceptisols and One Aridsol in Hawaii (하와이 화산회(火山灰)로부터 발달한 Inceptisols과 Aridsol 토양(土壤)의 표면전하(表面電荷) 특성(特性)에 관(關)하여)

  • Lim, Sookil H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.14 no.3
    • /
    • pp.110-116
    • /
    • 1981
  • Soil surface charge which manipulates some important soil physico-chemical properties such as nutrient and water holding abilities, colloidal stability and soil erosion was investigated in wide range of soil pH, using soils developed originally from same volcanic ash deposit but under different rainfall condition in Hawaii. The results can be summarized as follows : 1. Ustollic Camorthid (Kawaihae soil) which was developed under the lowest rainfall (less than 500 mm/yr) revealed low Z.P.C. (4.5-5.0) and less dependence of net charge on concentration of indifferent electrolytes. 2. Typic Hydrandepts (Akaka and Hilo soils) which were developed under the high rainfall (3050-7600 mm/yr) showed the Z.P.C. in between 5.5-7.0 and high dependence of net charge on concentration of indifferent electroytes. 3. It was found by X-ray diffraction together with total chemical analysis that amorphous materials were dominant (above 6.0%) in Typic Hydrandepts while dehydrated halloy-site (1 : 1 clay minerals) was dominant (45-50%) in Ustollic Camorthid. 4. In spite of little difference in particle size distribution of the soils, the difference of specific surface area was remarkable showing the order of Akaka (289) > Hilo (268) > Kawaihae (93). 5. It was evident, taking account of apparent field pH values, 5.2 of Akaka, 5.5 of Hilo and 7.0 of Kawaihae soil, respectively, that Akaka, and Hilo soils would show either positive or near zero (+ or 0) of ${\Delta}pH$ while Kawaihae soil would exhibit negative (-) of ${\Delta}pH$ at natural field condition.

  • PDF

Strength Characteristics of the Soil Mixed with a Natural Stabilizer (친환경 토양안정재를 혼합한 지반의 강도특성)

  • Kwon, Youngcheul;Oh, Sewook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.1
    • /
    • pp.45-51
    • /
    • 2012
  • This article aims to find method to mix a harmless hardening agent and soil generated during construction to make paving materials. The main purpose of this research is to get rid of the harmfulness(Chromium (VI), etc.) of cement which has been generally and frequently used as a hardening agent and strengthen it so that it can be used for the general foundation solidification and stabilization of civil engineering/construction structures such as dredging soil treatment, marine structure foundation treatment, surface soil stabilization, and river bank erosion prevention. NSS(Natural Stabilizer Soil) used for this study takes as its chief ingredient the mixture of lime and staple fibers extracted from natural fibers. It increases the shearing strength of soil that it improves the support and durability of the foundation and prevents flooding and frost as well. The pH measured to know its eco-friendliness was 6.67~7.15, and according to the migration testing, only Pb and CN were lower than the standards, so it can be said that NSS has almost no harmful components in it. According to the result of uniaxial strength testing, when the mixture ratio of weathered soil to NSS was 6%, about 1,850kpa strength was expressed. And according to the result of CBR. testing to figure out its appropriateness as a paving material, the CBR of the foundation was 4%~6%. But when the mixture ratio of NSS is over 6%, the water immersion CBR. is over 100%; thus, it is expected that it will show great utility as a paving material.

5-MHz Volume Backscattering Strength Measurements from Suspended Sediment Concentrations (5 MHz 신호를 이용한 부유물의 농도에 따른 후방산란강도 측정)

  • Lee, Changil;Choi, Jee Woong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.14-21
    • /
    • 2013
  • The erosion, suspension, and transport of sediment frequently occur in the coastal waters and estuarine. These processes often generate the so-called fluid mud layer, which is defined as a high-concentration aqueous suspension of fine grained sediment (> 10 g/l), consisting mainly of silt and clay-size particles. Therefore the high-resolution ultrasound is mostly used to detect or monitor the fluid mud layer. Because the sound attenuation tends to increase rapidly with the suspended sediment concentration, it is necessary to consider the accurate attenuation correction to estimate the backscattering strengths from the suspended sediment layers. In this paper, the volume backscattering strengths with various suspended sediment concentrations were measured using 5-MHz ultrasound signal in a small-scale water tank. The sound attenuation due to the viscosity and scattering from suspended sediment particles was predicted by the Richard's model and applied to the sonar equation to estimate the volume backscattering strengths from the suspended sediment concentrations. For the case that the additional attenuation was not considered, the volume backscattering strengths increased to the concentration of 20 g/l, and over this point, the backscattering strengths were roughly constant. However, for the case that the attenuation due to the suspended sediment concentration was considered, the backscattering strengths increased with the concentration.

Chemical Resistance of Low Heat Cement Concrete Used in Wastewater Treatment Structures Built on Reclaimed Land (해안매립지 하수처리시설물에 적용한 저발열시멘트 콘크리트의 내화학성 평가)

  • Chung, Yongtaek;Lee, Byungjae;Kim, Yunyong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.113-119
    • /
    • 2019
  • Concrete structures built on reclaimed land are combined with chemical erosion such as chlorine and sulfate ions from seawater. Chloride attack deteriorates the performance of the structure by corroding reinforcing bars. In addition, the waste water treatment structure has a problem that the concrete is deteriorated by the sulfate generated inside. Therefore, in this study, the characteristics and chemical resistance of low heat cement concrete used in wastewater treatment structures constructed on reclaimed land were evaluated. As a result of the experiment, the target slump and air content were satisfied under all the mixing conditions. The slump of low heat cement (LHC) concrete was higher than that of ordinary portland cement (OPC) concrete, while the air content of LHC concrete was smaller than that of OPC concrete with the same mix proportion. As a result of compressive strength test, OPC concrete showed higher strength at younger age compared to 28 days. In contrast, LHC concrete exhibited higher strength than OPC concrete at the age of 56 days. As a result of chlorine ion penetration tests, LHC-B concrete showed chlorine ion penetration resistance performance of the "very low" level at the age of 56 days. As a result of chemical resistance evaluation, when the LHC concrete is applied without epoxy treatment, chemical resistance is improved by about 18% compared to OPC concrete. In testing chemical resistance, the epoxy coated concrete exhibited less than 5% strength reduction when compared to sound concrete.

The Assessment of pH Variation for Neutralized Acidic Areas using Lysimeters by Seasons (라이시미터를 이용한 중화처리된 산성화경사지의 계절별 pH 용탈특성 평가)

  • Oh, Seungjin;Oh, Minah;Park, Chan-O;Jung, Munho;Lee, Jai-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.4
    • /
    • pp.79-86
    • /
    • 2015
  • Korean territories has formed about 70% of mountainous areas that have acidified serious level to average pH 4-5. There are a number of abandoned metal mines about 1,000 in Korea. However, mine tailings and waste rock included heavy metals are exposed to long-term environment without prevention facility or treatment system. Thus, ongoing management and monitoring of soil environment are required. Most of abandoned mine scattered in forest areas of slopes. Soil erosion due to continuous rainfall in the slopy areas can cause the secondary pollution by the influence eutrophication of water system and the productivity loss of the plant. Therefore, this study would like to estimate pH leaching rate by artificial rainfall using waste neutralization-agent in lysimeter. Moreover, the potentially of secondary pollution related to precipitation is figured out through the experiments, and the optimal planting methods would examinate after neutralizing treatment in soil. Experiments composed three kinds of lysimeter; lysimeter 1 had filled only acidic soil, lysimeter 2 had neutralized soil, and lysimeter 3 had planting plants after neutralized soil. In the results, lysimeter 2 showed the lowest pH leaching, and there is not specific relativity with pH leaching of the seasonal characteristics.

Sedimentologic Characteristics of the Erosional Coast in the Tide-dominated Environment (대조차환경 침식연안의 퇴적학적 특성)

  • Kum, Byung-Chul;Oh, Jae-Kyung
    • Journal of the Korean earth science society
    • /
    • v.23 no.7
    • /
    • pp.565-574
    • /
    • 2002
  • Based on previous investigations of aerial photographs and topographical surveys, this study focuses on the sedimentologic features of the Daebudo area including sedimentation processes, sedimentary facies and hydrologic conditions of the erosional coast. A total of 137 surface sediments and one core (by hand auger) sediment were obtained to interpret the depositional environment of the erosional coast in the macro-tidal coast. Surface sediments are distributed from sandy gravel (sG) to silt (Z). Textural parameters are characterized not only by coarse, poorly sorted, positive skewed and multi-modal distribution in the supra-tidal flat, but also finer, relatively well-sorted, symmetric distribution in the intertidal flat. According to the C/M diagram, sediment transport modes of study area are characterized by the mixed mode of suspension and bedload in the upper-, middle-tidal flat and by uniform suspension in the lower-tidal flat due to tidal effect. Vertical sediment distribution of the core, collected near shoreline, shows coarsening-upward, poorly sorted pattern by the input of detritus resulting from coastal erosion. Considering the sedimentological features of the study area, it appears to be composed of a coastal zone changed by not only artificial reclamation, but also by natural processes such as strong wave action due to typhoons and storms during high water level and long/short-term sea level rising. As a result, tide-dominated erosional coasts show that the shore is affected by local, temporal and hydrological conditions near high tide level and that the intertidal flat is represented by a general tide-dominated sedimentary environment.

Stability Analysis of Low Flow Revetments on External Forces (저수호안에 작용하는 외력에 의한 안정성분석)

  • Kim, Chul;Park, Nam-Hee;Kim, Dae-Young;Kim, Yun-Hwan
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.5
    • /
    • pp.147-153
    • /
    • 2008
  • Tractive forces by flowing water and ship generated waves are items that affect the stability of the low flow revetments among various external forces exerting on those revetments. Bank revetment stability by these external forces is analysed in this study. The study area is the section of the test construction area changing the artificial revetments to ecological revetments in Han river. Tractive forces are computed using the calculated flow velocity using RMA-2 model. The stability is analyzed comparing the calculated tractive forces with permissible tractive forces of the revetments in the study area. The calculated tractive forces at section number 93 is higher than permissible tractive forces in that section, so the section is estimated hydraulically unstable. The calculated tractive forces for the storm of 10th August 2007 are small compared to the permissible tractive forces in all sections. The sections are considered to be hydraulically stable, but have been eroded in some parts. The reason for the erosion is considered to have insufficient time for the plants taking root, and be exerted composite forces such as forces by ship generated waves. Ship generated waves by the excursion boats and small boats called river taxi was calculated. Wave forces by these calculated waves are computed and compared with the supporting forces of the revetment material. The external forces exerted by the ships in Han River on the revetments is very little compared with the permissible supporting forces of the revetments, so the revetments are estimated hydraulically stable. But considering the composite forces are exerted simultaneously, the stability consideration should include these composite forces.

The Acid Rock Drainage and Hydraulic Characteristics of the Waste Rock Dump (폐석적치장의 산성배수발생 및 수리특성 분석)

  • Cheong, Young Wook;Ji, Sang Woo;Yim, Gil Jae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.4
    • /
    • pp.13-24
    • /
    • 2004
  • This study was carried out to plan the prevention of the generation and discharge of Acid Rock Drainage (ARD). The Acid Base Accounting(ABA) test was performed for geological materials such as pit wall, waste rock and stream sediments near the Imgi abandoned pyrophyllite mine in Busan, Korea. In addition, hydraulic characteristics were tested with the disk tension infiltrometer around the waste rock dump. Maximum Potential Acidity(MPA) of geological materials near the Imgi mine was 246.942kg $H_2SO_4/t$, and maximum Acid Neutralising Capacity(ANC) was 8.7kg $H_2SO_4/t$. These results indicate the pit wall and waste rock, except most of stream sediments are acid generating geological materials. These have salt and free hydrogen ion which resulted from oxidation of sulfides. Hence they could be convert rain water to acid rock drainage. Although the waste rock dump of the Imgi mine have very low infiltration rate, slopes of the waste rock dump have many "V" type erosion gullies and multi-layers. These gullies and multi-layers have coarse clastic particle layers which have very large hydraulic conductivity. Through this coarse clastic particle layer a large part of rain flow into ground. And also this layer could function as aeration path which induced oxidation of sulfide minerals and generation of ARD continuously.

  • PDF

Bathymetric changes off the sea south of Jinwoo-do Island in the Nakdong River estuary (낙동강 하구역 진우도 남측 해역의 해저지형 변화)

  • Park, Bong-woon;Kim, Sung-bo;Kim, Jae-joong;Kim, Ki-cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.69-74
    • /
    • 2016
  • Bathymetric changes were studied in the southern sea off the Jinwoo-do Island, which is one of the deltaic barrier islands surrounding the Nakddong river estuary. In this study, 16 bathymetry data sets were obtained from June 2006 to April 2015. Two narrow channels, the one lying between Jinwoo-do and Shinja-do, and the other one lying between Nulcha-do and Jinwoo-do extended into the eastern and western parts of the study area, respectively. The eastern extension of the channel contained a passage of mixed estuarine waters of seawater and river water discharged from the Nakdong river barrier and the west Nakdong River. The western channel connected the Nakdong River estuary with the Busan New Port via a connecting pier. Total volumetric changes of sediments in study area and discharge flow of the Nakdong river barrier were analyzed. Bottom topographical changes occurred mainly in the eastern extension of the channel. These changes were initially characterized by gradual erosion or deposition followed by rapid restoration. The total volume of sediment gradually increased from June 2006 to March 2013, but experienced a sudden decrease in October 2013 because of typhoon Danas. Few fluctuations were observed from October 2013 to April 2015. Analysis of the cross-sectional bathymetry of the north-south direction showed that the deepest point of the eastern channel moved 100-130 m westward and 200 m northward between June 2006 and April 2015.