• Title/Summary/Keyword: Water environments

Search Result 1,330, Processing Time 0.034 seconds

Hygrothermal Effect of Salt-Water Environments on Mechanical Properties of Carbon/Epoxy Composites (탄소섬유/에폭시 복합재의 기계적 특성에 미치는 염수환경의 열습 영향)

  • Hwang, Young-Eun;Yoon, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1261-1266
    • /
    • 2012
  • In this study, salt-water immersion tests were experimentally performed for up to 12 months to investigate the hygrothermal effect of salt-water environments on the mechanical properties of carbon/epoxy composites. The composites were manufactured by laminating prepregs composed of carbon plain-woven fabric and epoxy resin. The specimens were subjected to temperatures of 35, 55, and $75^{\circ}C$ while being exposed to the salt-water environments. Mechanical test results showed that the tensile modulus and tensile strength decreased at a small rate, and the compressive modulus and compressive strength decreased at a relatively larger rate, as the exposure temperature and time increased. The rate of decrease in compressive strength became larger as the exposure temperature became higher. This is because a higher environmental temperature accelerates the salt-water uptake; this, in turn, reduces the compressive strength more rapidly.

Evaluation of Spatial and Temporal Variations of Water Quality in Lake Shihwa and Outer Sea by Using Water Quality Index in Korea: A Case Study of Influence of Tidal Power Plant Operation (수질평가지수를 이용한 시화호 내측 및 외측 해역의 시·공간적 수질 변화 평가: 조력발전소 가동에 따른 영향 연구)

  • Ra, Kongtae;Kim, Joung-Keun;Kim, Eun-Soo;Kim, Kyung-Tae;Lee, Jung-Moo;Kim, Sung-Keun;Kim, Eu-Yeol;Lee, Seung-Yong;Park, Eun-Ju
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.2
    • /
    • pp.102-114
    • /
    • 2013
  • The basin of Lake Shihwa is one of highly industrialized region of Korea and a current environmental issue of study area is the operation of tidal power plant (TPP) to improve water quality. The application of water quality index (WQI) which integrates five physiochemical parameters (transparency, DO, DIN, DIP and chlorophyll-a) of water quality in Lake Shihwa and outer sea during 2011~2012 were performed not only to evaluate the spatial and temporal distribution of the water quality but also to assess the effect of water quality improvement by the operation of tidal power plant. The higher WQI values were observed in monitored sites near the industrial complexes in Lake Shihwa and the outfall of wastewater treatment plants (WWTPs) in outer sea. This indicates that the quality of seawater is influenced by diffuse non-point sources from industrial, municipal and agricultural areas in Lake Shihwa and by point sources from the effluence of municipal and industrial wastewater throughout WWTPs in outer sea. Mean WQI value decreased from 53.0 in 2011 to 42.8 in 2012 of Lake Shihwa. Water quality has improved significantly after TPP operation because enhancement of seawater exchange between Lake Shihwa and outer sea leads to improve a hypoxic condition which is primarily a problem in Lake Shihwa. Mean WQI of outer sea showed similar values between 2011 and 2012. However, the results of hierarchical cluster analysis and the deterioration of water quality in summer season indicate that the operation of tidal power plant was not improved the water quality in the upper most area of Lake Shihwa. To successfully improve overall water quality of Lake Shihwa, it is urgently necessary to manage and reduce of non-point pollution sources of the basin of Lake Shihwa.

Development Trend of Biosensors for Antimicrobial Drugs in Water Environment (물 환경 내 항생제 약물 분석을 위한 바이오센서 개발 연구 동향)

  • Goh, Eunseo;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.565-572
    • /
    • 2016
  • While there have been great demands on improving domestic water pollution issues, the necessity for real time monitoring of particular drug residues in water resources has been raised since drug residues including antibiotics could provoke new trains of drug-resistant bacteria in water environments. Among many different types of drugs used for pharmaceutical treatment, antibiotics are considered to be one of the most hazardous to our ecosystem since they can rapidly promote the spreading of drug-resistant bacteria in water environments. In this mini-review, we will highlight recent developments made on creating in-situ sensing platforms for the fast monitoring of antibiotic residues in aquatic environmental samples focusing on optical and electrochemical techniques. Related recent technology developments and the resulting economy effects will also be discussed.

Efficient Power Allocation Algorithms for Adaptive Spatial Multiplexing MIMO Systems (적응 공간 다중화 MIMO 시스템을 위한 효율적인 전력 할당 알고리즘)

  • Shin, Joon-Ho;Kim, Dong-Geon;Park, Hyung-Rae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4C
    • /
    • pp.232-240
    • /
    • 2011
  • While the water-filling algorithm is an efficient power allocation method that maximizes the ergodic capacity of adaptive MIMO systems, its excessive residual power causes spectrum loss in real systems employing discrete modulation indices. In this paper we propose new power allocation algorithms that improve the spectral efficiency of MIMO systems by efficiently reallocating the residual power of the water-filling algorithm. We apply the proposed algorithms to the adaptive turbo-coded MIMO system to verify their performance through computer simulation in various environments. Simulation results show that the spectral efficiency of the proposed algorithms is better than that of the water-filling algorithm by about 8.9% at SNR of 20dB in Rayleigh fading environments.

Corrosion Behavior of Zn-Al-Mg Alloy Coated Steel Exposed to Residential Water (일상 생활용수 내 Zn-Al-Mg계 합금도금강재의 부식거동)

  • Jae Won Lee;Sung Jin Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.387-392
    • /
    • 2023
  • The objective of this study was to evaluate corrosion resistance of Zn-Al-Mg alloy coated steel in residential water with trace quantities of Cl-. Comparative evaluations were performed using two commercial coated steel products, GI and Galvalume, as reference samples. Examination of corrosion morphology and measurement of weight loss revealed that the Zn-Al-Mg alloy coated steel exhibited higher corrosion resistance than reference samples. This finding suggests that the alloy coated steel possesses long-term corrosion resistance not only in highly Cl- concentrated environments such as seawater, but also in environments with extremely low levels of Cl- found in residential water. The primary factor contributing to the superior corrosion resistance of the Zn-Al-Mg alloy coated steel in residential water is the formation of an inhibiting corrosion product composed primarily of two phases: Zn5(OH)6(CO3)2 and Zn5(OH)8Cl2·H2O. The preferential dissolution of Mg from the corroded coating layer can increase alkalinity, which might enhance the thermodynamical stability of Zn5(OH)6(CO3)2.

Hydraulic Model Test and Numerical Analysis of Grass Concrete in River Environment (자연형 호안공법의 그라스콘의 수리모형실험 및 수치해석 연구)

  • Jang, Suk-Hwan;Park, Sung-Bum;Park, Sang-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1244-1248
    • /
    • 2007
  • This study aims at investigating the in situ applying grass concrete system in river environments which widely used nowadays and reviewing the effect and flow resistance for grass concrete structure through the physical experiments by hydraulic model test and developing application method in river bed which has rigid flood resistance. Grass concrete structure has been independently tested under high velocity flow under the super critical condition, as well as sud critical flow measuring velocity and water surface elevation along the cross section. This results shows grass concrete system is also suited to use in aggressive river environments such as repairing a flood damaged embankment that had placed at risk the adjacent drainage channel with vegetation.

  • PDF

Development and Assessment of Specific and High Sensitivity Reverse Transcription Nested Polymerase Chain Reaction Method for the Detection of Aichivirus A Monitoring in Groundwater (지하수 중 Aichivirus A 모니터링을 위한 특이적 및 고감도 이중 역전사 중합효소연쇄반응 검출법 개발 및 평가)

  • Bae, Kyung Seon;Kim, Jin-Ho;Lee, Siwon;Lee, Jin-Young;You, Kyung-A
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.3
    • /
    • pp.190-198
    • /
    • 2021
  • Human Aichivirus (Aichivirus A; AiV-A) is a positive-sense single-strand RNA non-enveloped virus that has been detected worldwide in various water environments including sewage, river, surface, and ground over the past decade. To develop a method with excellent sensitivity and specificity for AiV-A diagnosis from water environments such as groundwater, a combination capable of reverse transcription (RT)-nested polymerase chain reaction (PCR) was developed based on existing reported and newly designed primers. A selective method was applied to evaluate domestic drinking groundwater samples. Thus, a procedure was devised to select and subsequently identify RT-nested PCR primer sets that can successfully detect and identify AiV-A from groundwater samples. The findings will contribute to developing a better monitoring system to detect AiV-A contamination in water environments such as groundwater.

Water quality management of Jeiu Harbor using material cycle model(I) - The Variation of Physical Oceanographic Environments in Jeiu Harbor - (물질순환모델을 이용한 제주항의 수질관리(I) - 제주항의 물리해양환경의 변화 -)

  • 조은일;이병걸;오윤근
    • Journal of Environmental Science International
    • /
    • v.11 no.1
    • /
    • pp.25-32
    • /
    • 2002
  • In order to control of water quality in Jeju harbor, variation of physical oceanographic environments was estimated using material cycle model. It is composed of the three-dimensional hydrodynamic model for the simulation at water flow and material cycle model for the simulation of water quality. The three dimensional hydrodynamic model simulation of the circulation and mixing in Jeju Harbor has been conducted forced by Sanzi River Discharge, Tidal elevation, wind and Solar heat in case of August and November, 2000 and February and May, 2001, respectively. The results of numerical model and observation show that the model can produce realistic results of current in the harbor. The monthly variation of velocity pattern are not so much changed are found In Jeju Harbor. The residual current was forced by temperature, salinity, density, wind and tidal current. The residual current of August, 2000 are the strongest among four month. It can be explained that the density effect can be important role in residual current at Jeju Harbor. As the results of salinity distribution simulation, very low concentration of all levels were simulated in August, 2000. The flowrate of Sanzi river was investigated 77,760 ㎥ /d in August, 2000. Therefore, pollutant loadings from Sanzi river should be considered for water quality management in Jeiu harbor.

Prediction of Climate-induced Water Temperature using Nonlinear Air-water Temperature Relationship for Aquatic Environments (지구기후모형 기온변화에 따른 미래 하천생태환경에서의 수온 예측)

  • Lee, Khil-Ha
    • Journal of Environmental Science International
    • /
    • v.25 no.6
    • /
    • pp.877-888
    • /
    • 2016
  • To project the effects of climate-induced change on aquatic environments, it is necessary to determine the thermal constraints affecting different fish species and to acquire time series of the current and projected water temperature (WT). Assuming that a nonlinear regression between the WT at individual stations and the ambient air temperature (AT) at nearby weather stations could represent the best relationship of air-water temperature, This study estimates future WT using a general circulation model (GCM). In addition, assuming that the grid-averaged observations of AT correspond to the AT output from GCM simulation, this study constructed a regression curve between the observations of the local WT and the concurrent GCM-simulated surface AT. Because of its low spatial resolution, downscaling is unavoidable. The projected WT under global warming scenario A2 (B2) shows an increase of about $1.6^{\circ}C$ ($0.9^{\circ}C$) for the period 2080-2100. The maximum/minimum WT shows an amount of change similar to that of the mean values. This study will provide guidelines for decision-makers and engineers in climate-induced river environment and ecosystem management.