• Title/Summary/Keyword: Water environment

Search Result 13,410, Processing Time 0.05 seconds

A Study on Instream Flow for Water Quality Improvement in Lower Watershed of Nam River Dam (남강댐 하류유역 수질개선 필요유량 산정에 관한 연구)

  • Kim, Gyeong-Hoon;Jung, Kang-Young;Lee, In-Jung;Lee, Kyung-Lak;Cheon, Se-Uk;Im, Tae-Hyo;Yoon, Jong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.1
    • /
    • pp.44-59
    • /
    • 2014
  • Despite the implementation of TMDL, the water quality in lower watershed of Nam river dam has worsened continuously since 2005. Multifarious pollution sources such as cities and industrial districts are scattered around it. Nam river downstream bed slope is very gentle towards the downstream water flow of slows it down even more, depending on the water quality deterioration is accelerated eutrophication occurs. In this study, the mainstream in lower watershed of Nam river dam region to target aquatic organic matter by phytoplankton growth contribution was evaluated by statistical analysis. and statistical evaluation of water quality and the accuracy of forecasting, model calibration and verification procedures by completing QUALKO2 it's eutrophic phenomena that occur frequently in the dam outflow through scenarios predict an increase in water quality management plans to present the best should.

Stable isotope and water quality analysis of coal bed methane produced water in the southern Qinshui Basin, China

  • Pan, Jienan;Zhang, Xiaomin;Ju, Yiwen;Zhao, Yanqing;Bai, Heling
    • Membrane and Water Treatment
    • /
    • v.4 no.4
    • /
    • pp.265-275
    • /
    • 2013
  • China is one of the countries with the highest reserves of coal bed methane (CBM) in the world. Likewise, the CBM industry is significantly growing in China. However, activities related to CBM development have led to more environmental problems, which include serious environmental damage and pollution caused by CBM-produced water. In this paper, the detailed characteristics of CBM-produced water in the southern Qinshui Basin were investigated and analyzed and compared with local surface water and coal mine drainage. Most of CBM-produced water samples are contaminated by higher concentration of total dissolved solids (TDS), K (Potassium), Na (Sodium) and $NH_4$. The alkalinity of the water from coalmines and CBM production was higher than that of the local surface water. The concentrations of some trace elements such as P (Phosphorus), Ti (Titanium), V (Vanadium), Cr (Chromium), Ni (Nickel), Zn (Zinc), Ge (Germanium), As (Arsenic), Rb (Rubidium), and Pd (Palladium) in water from the coalmines and CBM production are higher than the acceptable standard limits. The ${\delta}D$ and ${\delta}^{18}O$ values of the CBM-produced water are lower than those of the surface water. Similarly, the ${\delta}D$ values of the CBM-produced water decreased with increasing drainage time.

Elasticity Analyses between Water Temperature and Water Quality considering Climate Change in Nak-dong River Basin (기후변화를 고려한 낙동강 유역의 수온과 수질 탄성도 분석)

  • Shon, Tae Seok;Lee, Kyu Yeol;Im, Tae Hyo;Shin, Hyun Suk
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.830-840
    • /
    • 2011
  • Climate change has been settled as pending issues to consider water resources and environment all over the world, however, scientific and quantitative assessment methods of climate change have never been standardized. When South Korea headed toward water deficiency nation, the study is not only required analysis of atmospheric or hydrologic factors, but also demanded analysis of correlation with water quality environment factors to gain management policies about climate change. Therefore, this study explored appropriate monthly rainfall elasticity in chosen 41 unit watersheds in Nak-dong river which is the biggest river in Korea and applied monitored discharge data in 2004 to 2009 with monthly rainfall using Thiessen method. Each unit watershed drew elasticity between water temperature and water quality factors such as BOD, COD, SS, T-N, and T-P. Moreover, this study performed non-linear correlation analysis with monitored discharge data. Based on results of analysis, this is first steps of climate change analysis using long-term monitoring to develop basic data by Nak-dong river Environmental Research Center (Ministry of Environment) and to draw quantitative results for reliable forecasting. Secondary, the results considered characteristic of air temperature and rainfall in each unit watershed so that the study has significance its various statistical applications. Finally, this study stands for developing comparable data through "The 4 major river restoration" project by Korea government before and after which cause water quality and water environment changes.

Numerical Modeling of the Effect of Sand Dam on Groundwater Flow

  • Yifru, Bisrat;Kim, Min-Gyu;Chang, Sun Woo;Lee, Jeongwoo;Chung, Il-Moon
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.529-540
    • /
    • 2018
  • Sand dam is a flow barrier commonly built on small or medium size sandy rivers to accumulate sand and store excess water for later use or increase the water table. The effectiveness of sand dam in increasing the water table and the amount of extractable groundwater is tested using numerical models. Two models are developed to test the hypothesis. The first model is to simulate the groundwater flow in a pseudo-natural aquifer system with the hydraulically connected river. The second model, a modified version of the first model, is constructed with a sand dam, which raises the riverbed by 2 m. In both models, the effect of groundwater abstraction is tested by varying the pumping rate. As the model results show the groundwater after the construction of the sand dam has increased significantly and the amount of extractable groundwater is also increased by many folds. Most importantly, in the second model, unlike the pseudo-natural aquifer system, the groundwater abstraction does not have a significant effect on the water table.

Current Status and Perspective of Biological Assessments of Water Environment in Korea (우리나라 생물학적 물환경평가의 현황과 미래)

  • Hwang, Soon-Jin;Kim, Nan-Young;Won, Doo Hee;An, Kwang Kuk;Lee, Jae Kwan;Kim, Chang Soo;Shin, Jae-Ki
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.757-767
    • /
    • 2006
  • Biological assessments are the primary tool for evaluating the biological condition of a water body and makes it possible to understand accumulative and long-term effect of stressors. They also provide reliable biological information for which disturbed systems are to be restored. Sustainable water environment is not enough with attaining only the clean water, but it should sustain healthy and diverse aquatic life. Aquatic organisms are affected by various factors, including not only water quality but also habitat condition and stressors, and thus good condition of both physical and chemical water quality is prerequisite for sustaining healthy organisms. Therefore, biological assessment, along with other physical and chemical assessments, are crucial for evaluating the health of a water body. Overall, sustainability of water environment demands the attainment and maintenance of ecological integrity, which is resulted from the combination of physical, chemical and biological integrity. The biological criteria will play very important role in the water resource management and policy issues, and thus bioassessment program should be fully implemented and supported eventually by the law. To keep ecosystem health of water environment safely from the toxic pollutants and other stressors, the following suggestions need to be considered in environmental quality standards in Korea. For the first step, the biological indicators need to be introduced in evaluating river quality condition; they provide a qualitative description of biological condition of water body. Secondly, the biological water quality standards using biotic indices should be developed and implemented under the consideration of characteristics of Korean river systems. Lastly, the ecological status classification regime (ESCR) should be developed and introduced; it could be used in quality assessment of the water environment in general. In developing ESCR, integration of physico-chemical, biological, and habitat parameters should be taken into account.

Perception of Drinking Water and Water Environment among Housewives in Gumi City Area (구미 지역 주부들의 먹는 물과 물 환경에 대한 인식)

  • Cheong, Cheol;Park, Hye-Gyoung
    • Journal of Science Education
    • /
    • v.32 no.1
    • /
    • pp.73-84
    • /
    • 2008
  • The purpose of this study was to elucidate the perception of drinking water and water environment held by housewives in Gumi city area. The subject of this study were 20 housewives and surveyed with a questionnaire on a self-reporting basis. Results are as follows: 1. Housewives were concerned about drinking water and water environment as natural resource affecting Gumi city area. The percentage og the housewives who had used the purified tap water and the boiled water as drinking water was 35% and 30%, respectively. Also, The percentage of the safety of tap water was 75%. However, their perceived level about the safety of drinking water was relatively low. 2. Housewives suggests that a drinking water conservation campaign and active participation may be more effective if it is linked to local community. Furthermore, continuous education about drinking water and water environment promoting perception of tap water as drinking water.

  • PDF