• Title/Summary/Keyword: Water electrolysis

Search Result 382, Processing Time 0.035 seconds

Development of the Electrolysis Ballast Water Treatment System and Test (직접 전기분해식 선박평형수 처리장치 개발과 시험에 관한 연구)

  • Bag, Og-Yeol;Moon, Jang;Park, Jun-Mo;Kong, Gil-Young
    • Journal of Navigation and Port Research
    • /
    • v.41 no.3
    • /
    • pp.79-86
    • /
    • 2017
  • Ballast water filled into and discharged from the ballast tank of a ship has a negative impact on local marine environment due to various aquatic organisms contained therein. The IMO developed and adopted "The International Convention for the Control and Management of Ships Ballast Water and Sediments, 2004" with the purpose of protecting the marine environment from transfer of harmful aquatic organisms in ballast water carried by ships. The IMO BWM Convention was approved in September 2016 and ships must be equipped with ballast water management system after September 2017. Ships' ballast water treatment methods are divided into using active substances as electrolytic type, ozone type, chemical dosing type and using physical treatment type as filter type, ultraviolet type. It is also used with a combination of two methods. Electrolysis is superior in terms of cost and efficiency. In this study, basic principles, components, and land base test contents of electrolysis ballast water treatment system, a direct electrolyzed ballast water treatment system, were examined. Land base test was conducted with 300m3/h capacity device at the KIOST Geoje plant where the government test facility was installed. This test validated that the system meets IMO standards.

Quality Characteristics during Storage of Ginseng Washed by Different Methods (세척방법에 따른 인삼의 저장 중 품질특성)

  • Lee, Hyun-Seok;Cha, Hwan-Soo;Kim, Byeong-Sam;Kwon, Ki-Hyun
    • Food Science and Preservation
    • /
    • v.16 no.3
    • /
    • pp.342-347
    • /
    • 2009
  • We sought to improve the methods for washing fresh raw ginseng. The quality of ginseng surface-washed by different methods was evaluated during storage at 10C and $20^{\circ}C$. The raw ginseng surface-washing method was a full-cone spray-type procedure using water and air. The water for decontamination had an electrolysis value of 80 ppm, also known as electrolysis water $2^{\circ}C$ water and water containing 5 ppm chlorine dioxide, were also used for decontamination. The Hunter color (${\Delta}E$) of ginseng washed with water withan electrolysis value of 80 ppm, or water with 5 ppm chlorine dioxide, was greater than that seen after other washing methods were used. The weight loss after washing with 5 ppm chlorine dioxide water was similar to that seen after washing with $2^{\circ}C$ water or 80 ppm electrolysis water. Reductions in total microorganism levels, and counts of yeasts and molds, assayed 10 days after washing with 5 ppm chlorine dioxide water were greater than seen after use of other sterilization methods. Quality maintenance on storage, at both 10C and 20C, after washing with 80 ppm electrolysis water, was better than that noted after other sterilization methods. The moisture content of washed ginseng was similar under all storage conditions tested.

Development of Ballast Water Treatment Technology (Feasibility Study of NaOCl Produced by Electrolysis) (밸러스트수 처리기술개발 I (해수전해법의 적용가능성 연구))

  • Yoon, B.S.;Rho, J.H.;Kim, K.I.;Park, K.S.;Kim, H.R.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.4
    • /
    • pp.174-178
    • /
    • 2005
  • Destruction of marine ecology system induced by the bal last water discharged from ships is one of the most serious problem among the various ship associated environmental impacts. International Maritime Organization (IMO) has actively dealt with this problem for a long time and is going to start to activate very strong international treatment for preventing ocean from such serious environmental impact. Various technologies of ballast water treatment are now being developed all over the world. In this paper, recent trend of existing ballast water treatment technologies is investigated in detail. Furthermore, in order to apply electrolysis technology to ballast wale r treatment, its basic principle is reviewed theoretically and its feasibility is checked through some in-situ experiments. Quite good results are shown in the experiments enough to confirm its applicability in ballast water treatment.

  • PDF

Application of Response Surface Methodology to Optimize the Performance of the Electro-Chlorination Process (전기분해 염소소독공정의 반응표면분석법을 이용한 차아염소산나트륨 발생 최적화)

  • Ju, Jaehyun;Park, Chan-gyu
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.3
    • /
    • pp.167-175
    • /
    • 2022
  • Background: Disinfection is essential to provide drinking water from a water source. The disinfection process mainly consists of the use of chlorine and ozone, but when chlorine is used as a disinfectant, the problem of disinfection by-products arises. In order to resolve the issue of disinfection by-products, electro-chlorination technology that produces chlorine-based disinfectants from salt water through electrochemical principles should be applied. Objectives: This study surveys the possibility of optimally producing active chlorine from synthetic NaCl solutions using an electro-chlorination system through RSM. Methods: Response surface methodology (RSM) has been used for modeling and optimizing a variety of water and wastewater treatment processes. This study surveys the possibility of optimally producing active chlorine from synthetic saline solutions using electrolysis through RSM. Various operating parameters, such as distance of electrodes, sodium chloride concentration, electrical potential, and electrolysis time were evaluated. Results: Various operating parameters, such as distance of electrodes, sodium chloride concentration, electrical potential, and electrolysis time were evaluated. A central composite design (CCD) was applied to determine the optimal experimental factors for chlorine production. Conclusions: The concentration of the synthetic NaCl solution and the distance between electrodes had the greatest influence on the generation of hypochlorite disinfectant. The closer the distance between the electrodes and the higher the concentration of the synthetic NaCl solution, the more hypochlorous acid disinfectant was produced.

Disinfection effect and formation characteristics of disinfection by-product at the Electrolyzed Water (전기분해수 살균효과 및 소독부산물 생성 특성 평가)

  • Cho, Youngman
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.5
    • /
    • pp.547-554
    • /
    • 2013
  • Chlorine has strong oxidizing power, also it is many advantages over other disinfectants such as the residual characteristic and economic feasibility. However, chlorine also has disadvantages such as creating disinfection by-products of chlorine as THMs. In particular, the most deadly disadvantage of chlorine is that it is extremely poisonous toxins about all alive lives. Disinfection with electrolysis water can be a very useful way Because you do not have to worry about chlorine's dangerous. In this study, we evaluated the potential as a disinfectant, across the evaluating disinfection effect and generating characteristic of by-products. The electrolyzed water could be obtained removal efficiencies of over 99.9 % the coliform by operating condition such as residence time, current density (voltage), the electrode gap. The residual chlorine be generated 10,000 mg/L in current density $1.0A/dm^2$ and residence time of 10 minutes. The residual chlorine concentration was possible to maintain a stable. The by-products generated by high concentration residual chlorine in the reactor such as trihalomethanes, haloaceticacid, chloralhydrate, haloacetonitrile were detected in less than a water quality standards. At the concentration of less than residual chlorine of 1 ppm, the chlorine disinfection by-products be generated most below the detection limit.

An Experimental Study on the Application of Electrolysis to Nightsoil Treatment Plant Effluent, as a Means of Advanced Treatment Techonology (전해처리법(電解處理法)에 의한 분뇨(糞尿) 2차 처리수(處理水)의 고도처리(高度處理)에 관한 연구(硏究))

  • Chung, Kyeong Jin;Kim, Dong Min;Lee, Dong Houn
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.2
    • /
    • pp.77-83
    • /
    • 1995
  • The effluent from conventional nightsoil treatment plants contains nutrients, color and chlorides, in addition to residual organics and suspended solids, and thereby causes substantial pollution problems in receving water resources. In order to verify the usefullness of electrolysis in removing those residual pollutants from such conventional nightsoil treatment plant effluent, a bench scale experiment was conducted using sufficiently dilluted human nightsoil as experiment feeds. The result showed mean removals of 45% of total phosphorus and 85% of color, in addition 87% of residual BOD, 47% of residual COD and 85% of residual SS. The optimum electric current was found to be 15 ampere and the optimum hydraulic residence time 21/2 hour.

  • PDF

Study of Electrolysis Ozone Generator Using Polymer Electrolyte (고분자 전해질을 이용한 전기분해식 오존 발생에 관한 연구)

  • Park, Jong-Eun;Lee, Ju-Bong;Lee, Hong-Ki;Park, Soo-Gil
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.906-908
    • /
    • 1999
  • The application of ozone solid polymer electrolyte or Membrel water electrolysis cells with $PbO_2$ anodes for anodic generation of ozone in electrolyte-free water is reported. Maximum yields were obtained at a temperature of $25^{\circ}C-30^{\circ}C$ and current density of about 1A/$cm^2$. The current efficiency was not found to depend on ozone concentration in the feed water. exclusive transference of electric current by protons absence of convection in the electrolyte and high oxygen oversaturatation in the vicinity of electrode

  • PDF

Tracing Resistances of Anion Exchange Membrane Water Electrolyzer during Long-term Stability Tests

  • Niaz, Atif Khan;Lee, Woong;Yang, SeungCheol;Lim, Hyung-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.358-364
    • /
    • 2021
  • In this study, an anion exchange membrane water electrolysis (AEMWE) cell was operated for ~1000 h at a voltage bias of 1.95 V. Impedance spectra were regularly measured every ~ 100 h, and changes in the ohmic and non-ohmic resistance were traced as a function of time. While there was relatively little change in the I-V curves and the total cell resistance during the long-term test, we observed various electrochemical phenomena in the cell: 1) initial activation with a decrease in both ohmic and non-ohmic resistance; 2) momentary and non-permanent bubble resistance (non-ohmic resistance) depending on the voltage bias, and 3) membrane degradation with a slight increase in the ohmic resistance. Thus, the regular test protocol used in this study provided clear insights into the performance degradation (or improvement) mechanism of AEMWE cells.

Development of Water Treatment Device By Fluidization Electrolysis Using Granular Ceramics

  • Ishikawa, Katsumi;Tamura, Rokurou;Shuto, Rika;Miyawaki, Jinuchi;Tanabe, Kimiko
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.737-745
    • /
    • 1996
  • In recent years, with the increase in the consumption of natural resources and energy, global environmental problems have appeared. This is a very serious environmental load on worldwide food production. For this reason, innovative techniques for production of low entropy by using effectively the energy for the ecosystemic agriculture have been expected. In this study, granular ceramics of 2 to 3mm in diameter having electrical charges at the surface were produced, using the natural raw materials of silicate minerals haing excellent moldabilities and sintering properties . Production of water having functions was attempted by effective use of the electrochemical energy of the ceramics with an efficient water treatment apparatus in which the ceramics were fluidized in water, differently from conventional systems. In the experimental results, the EC of water treated with the ceramics was not changed, but the ORP and also the pH and the DO were changed. The speed of oxidation -re uction reaction was high, and the ceramics -treated water enhanced the vigor of seeds. It can be expected that this treatment system, by which the ORP of water can be moderately controlled, is advantageous in controlling the growth of plants.

  • PDF

Comparison of Microstructure and Electrical Conductivity of Ni/YSZ and Cu/YSZ Cathode for High Temperature Electrolysis (고온수전해용 Ni/YSZ와 Cu/YSZ 환원극의 미세구조 및 전기전도도 비교)

  • Kim, Jong-Min;Shin, Seock-Jae;Woo, Sang-Kook;Kang, Kae-Myung;Hong, Hyun-Seon
    • Korean Journal of Materials Research
    • /
    • v.18 no.7
    • /
    • pp.384-388
    • /
    • 2008
  • Hydrogen production via high high-temperature steam electrolysis consumes less electrical energy than compared to conventional low low-temperature water electrolysis, mainly due to the improved thermodynamics and kinetics at elevated temperaturetemperatures. The elementalElemental powders of Cu, Ni, and YSZ are were used to synthesize high high-temperature electrolysis cathodecathodes, of Ni/YSZ and Cu/YSZ composites, by mechanical alloying. The metallic particles of the composites were uniformly covered with finer YSZ particles. Sub-micron sized pores are were homogeneously dispersed in the Ni/YSZ and Cu/YSZ composites. In this study, The cathode materials were synthesized and their Characterizations properties were evaluated in this study: It was found that the better electric conductivity of the Cu/YSZ composite was measured improved compared tothan that of the Ni/YSZ composite. Slight A slight increase in the resistance can be produced for in a Cu/YSZ cathode by oxidation, but it this is compensated offset for by a favorable thermal expansion coefficient. Therefore, Cu/YSZ cermet can be adequately used as a suitable cathode material of in high high-temperature electrolysis.