• Title/Summary/Keyword: Water effect

Search Result 19,605, Processing Time 0.046 seconds

Evaluation of the Dam Release Effect on Water Quality using Time Series Models (시계열 모형의 적용을 통한 댐 방류의 수질개선 효과 검토)

  • Kim, Sangdan;Yoo, Chulsang
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.685-691
    • /
    • 2004
  • Water quality forecasting with long term flow is important for management and operation of river environment. However, it is difficult to set up and operate a physical model for water quality forecasting due to large uncertainty in the data required for model setting. Therefore, relatively simpler stochastic approaches are adopted for this problem. In this study we try several multivariate time series models such as ARMAX models for the possible substitute for water quality forecasting. Those models are applied to the BOD and COD levels at Noryangin station, Han river, and also evaluated the effect of release from Paldang dam on them. Monthly BOD and COD data from 1985 to 1991 (7 years) are used for model building and another two year data for model testing. As a result of the study, the effect of improvement on water quality is much more effective combining with the water quality improvement of dam release than considering only increment of dam release in the downstream Han river.

Hypoglycemic and Angiotension Converting Enzyme Inhibitory Effect of Water and Ethanol Extracts from Haesongi Mushroom (Hypsizigus marmoreus)

  • Jung, Eun-Bong;Jo, Jin-Ho;Cho, Seung-Mock
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.541-545
    • /
    • 2009
  • Water and ethanol extracts were prepared from the haesongi mushroom (Hypsizigus marmoreus) to measure functional components. The ability of the extracts to inhibit angiotensin-converting enzyme (ACE) and their hypoglycemic effects were also determined; the latter was measured by $\alpha$-amylase and glucosidase inhibition. Extraction yield, protein content, total phenol, and $\beta$-glucan in the water extracts were 55.86, 17.71, 1.89, and 21.93%, respectively. The respective values for the ethanol extracts were lower than those for water extracts. Both water and ethanol extracts showed dosedependent ACE inhibition, the effect of the former being greater. The water extract inhibited ACE activity by 95.34% at 40 mg/mL. The $IC_{50}$ values of the water extracts were 63.32 and 0.41 mg/mL for $\alpha$-amylase and glucosidase, respectively. Thus, the water extracts had a greater hypoglycemic effect than the ethanol extracts. From these results, water is a better solvent than ethanol to extract from the haesongi mushroom functional components that show ACE inhibition and have hypoglycemic effects.

A Study on the Contamination of D.I. Water and its Effect on Semiconductor Device Manufacturing (초순수의 오염과 반도체 제조에 미치는 영향에 대한 연구)

  • Kim, Heung-Sik;Yoo, Hyung-Won;Youn Chul;Kim, Tae-Gak;Choi, Min-Sung
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.11
    • /
    • pp.99-104
    • /
    • 1993
  • We analyzed the D.I. water used in wet cleaning process of semiconductor device manufacturing both at the D.I. water plant and at the wafer cleaning bath to detect the impurity source of D.I. water contamination. This shows that the quantity of impurity is related to the resistivity of D.I. water, and we found that the cleanliness of the wafer surface processed in D.I. water bath was affected by the degree of the ionic impurity contamination. So we evaluated the cleaning effect as different method for Fe ion, having the best adsoptivity on wafer surface. Moreover the temperature effect of the D.I. water is investigated in case of anion in order to remove the chemical residue after wet process. In addition to the control of D.I. water resistivity, chemical analysis of impurity control in D.I. water should be included and a suitable cleaning an drinsing method needs to be investigated for a high yielding semiconductor device.

  • PDF

Prediction of Water Quality Variation Caused by Dredging Urban River-bed (도시하천의 하상퇴적토 준설에 따른 수질변화 예측)

  • Jo, Hong-Je;Lee, Byeong-Ho;Kim, Jeong-Sik;Lee, Geun-Bae
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.2
    • /
    • pp.137-148
    • /
    • 2002
  • The purpose of this study was to examine the effect of water quality improvement due to dredging the bottom deposit at the downstream of a urban river. The finite difference method was used to analyze the water quality variations caused by the depths of dredging and intercepting ratios of the goal years. 21 boring points were selected along the 11.2km river reach running through a metropolitan city. The pollution levels of the deposits from the bored Points were examined by the leaching test. The improvement effect of the water quality, measured as changes of COD, were carried at under drought, minimal, and normal flow. The result indicates that the dredging of the contaminated sludge contributes the improvement of the water quality.

Numerical Modeling of the Effect of Sand Dam on Groundwater Flow

  • Yifru, Bisrat;Kim, Min-Gyu;Chang, Sun Woo;Lee, Jeongwoo;Chung, Il-Moon
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.529-540
    • /
    • 2018
  • Sand dam is a flow barrier commonly built on small or medium size sandy rivers to accumulate sand and store excess water for later use or increase the water table. The effectiveness of sand dam in increasing the water table and the amount of extractable groundwater is tested using numerical models. Two models are developed to test the hypothesis. The first model is to simulate the groundwater flow in a pseudo-natural aquifer system with the hydraulically connected river. The second model, a modified version of the first model, is constructed with a sand dam, which raises the riverbed by 2 m. In both models, the effect of groundwater abstraction is tested by varying the pumping rate. As the model results show the groundwater after the construction of the sand dam has increased significantly and the amount of extractable groundwater is also increased by many folds. Most importantly, in the second model, unlike the pseudo-natural aquifer system, the groundwater abstraction does not have a significant effect on the water table.

Mechanical damage evolution and a statistical damage constitutive model for water-weak sandstone and mudstone

  • Lu yuan Wu;Fei Ding;Jian hui Li;Wei Qiao
    • Geomechanics and Engineering
    • /
    • v.38 no.1
    • /
    • pp.45-56
    • /
    • 2024
  • The weakening effect of water on rocks is one of the main factors inducing deformation and failure in rock engineering. To clarify this weakening effect, immersion tests and post-immersion triaxial compression tests were conducted on sandstone and mudstone. The results showed that the strength of water-immersed sandstone decreases with increasing immersion time, exhibiting an exponential relationship. Similarly, the strength of water-immersed mudstone decreases with increasing environmental humidity, also following an exponential relationship. Subsequently, a statistical damage model for water-weakened rocks was proposed, changes in elastic modulus to describe the weakening effect of water. The model effectively simulated the stress-strain relationships of water-affected sandstone and mudstone under compression. The R2 values between the theoretical and experimental peak values ranged from 0.962 to 0.996, and the MAPE values fell between 3.589% and 9.166%, demonstrating the model's effectiveness and reliability. The damage process of water-saturated rocks corresponds to five stages: compaction stage - no damage, elastic stage - minor damage, crack development stage - rapid damage increase, post-peak residual stage - continuous damage increase, and sliding stage - damage completion. This study provides a foundational reference for researching the fracture characteristics of overlying strata during coal mining under complex hydrogeological conditions.

A Study on the Change of Indoor Heating Environment with the Creation of Indoor Water Space through a Scale Model (축소모형을 이용한 실내 수공간 도입 효과 연구)

  • Oh, Sang Mok;Oh, Se Gyu
    • KIEAE Journal
    • /
    • v.10 no.6
    • /
    • pp.67-72
    • /
    • 2010
  • This study was conducted to examine the change of heating environment with the creation of an indoor water space. Living environments and comfort of dwellers can be improved by utilizing the physical properties of water effectively. This study focuses on the basic examination of the effect of water space and the environmental effects of water space by experiment. Two identical models were fabricated to compare the changes in indoor temperature and humidity with and without a water space. With the water space, temperature was reduced by an average of $0.55^{\circ}C$ a day and moisture content increased by an average of 4%. As a result, it was possible to obtain quantitative data on water space's temperature reduction and humidity control capacities. This study is expected to provide basic information for further studies on the effect of water spaces in various buildings.

Analysis for Air Temperature Trend and Elasticity of Air-water Temperature according to Climate Changes in Nakdong River Basin (기후변화에 따른 낙동강 유역의 기온 경향성 및 수온과의 탄성도 분석)

  • Shon, Tae Seok;Lim, Yong Gyun;Baek, Meung Ki;Shin, Hyun Suk
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.822-833
    • /
    • 2010
  • Temperature increase due to climate changes causes change of water temperature in rivers which results in change of water quality etc. and the change of river ecosystem has a great impact on human life. Analyzing the impact of current climate changes on air and water temperature is an important thing in adapting to the climate changes. This study examined the effect of climate changes through analyzing air temperature trend for Nakdong river basin and analyzed the elasticity of air-water temperature to understand the effect of climate changes on water temperature. For analysis air temperature trend, collecting air temperature data from the National Weather Service on main points in Nakdong river basin, and resampling them at the units of year, season and month, used as data for air temperature trend analysis. Analyzing for elasticity of air-water temperature, the data were collected by the Water Environment Information system for water temperature, while air temperature data were collected at the National Weather Service point nearest in the water temperature point. And using the results of trend analysis and elasticity analysis, the effect of climate changes on water temperature was examined estimating future water temperature in 20 years and 50 years after. It is judged that analysis on mutual impact between factors such as heat budget, precipitation and evapotranspiration on river water temperature affected by climate changes and river water temperature is necessary.

The Effect of Combined Aggregates on Fluidity of the High Fluid Concrete Containing GGBFS (고로슬래그미분말을 혼입한 고유동콘크리트에서 골재조합이 콘크리트 유동성상에 미치는 영향에 관한 실험 연구)

  • Kim, Jae-Hun;Yoon, Sang-Chun;Jee, Nam-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.4
    • /
    • pp.79-86
    • /
    • 2003
  • The purpose of study is to offer base data for high fluid concrete mix property, as grasp effect of aggregate to reach much more effect for producing high fluid concrete. For this study, there are three types of combined aggregates, river sand + river aggregate(type A), river sand + crusted aggregate(type B), washed sea sand + crushed aggregate(type C) and take a factor, water-contents, water-binder ratio and S/a. And so, we had following conclusion, resulting application-ability of high fluid mortar by K-slump tester to use a handy consistency measuring instrument. And so, we had following conclusion, resulting application-ability of high fluid concrete by K-slump tester to use a handy consistency measuring instrument. 1) In cafe of regular water binder ratio, high fluid concrete suffered much effect of combined aggregates and water binder ratio. Range of water binder ratio by combined aggregates is w/b 0.4 downward(type A and B), w/b 0.35 downward(type C). 2) Water contents to need for producing high fluid concrete is minimum 170kg/$\textrm{m}^3$ without regard to combined aggregates. 3) The effect of S/a on high fluid concrete by combined aggregates is approximately S/a 50% (type A and B), s/a 50-55% (type C). 4) Consistency measuring of high fluid concrete by K-slump tester is possible and first indication value, high fluid concrete can be produced, is 6~10.5cm.

The effect of water restriction on physiological and blood parameters in lactating dairy cows reared under Mediterranean climate

  • Benatallah, Amel;Ghozlane, Faissal;Marie, Michel
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.1
    • /
    • pp.152-158
    • /
    • 2019
  • Objective: This study was conducted to evaluate the effect of water restriction (WR) on physiological and blood parameters in lactating dairy cows reared under Mediterranean climate. Methods: The trial lasted 16 days preceded by two weeks of adaptation to the experimental condition in spring 2014 on 6 dairy cows in mid-lactation. These cows were allowed water ad libitum for 4 days (W100) (hydration period), then split into 2 groups, one group has received 25% and the other 50% of water compared to their mean water consumption during the hydration period; then rehydrated for 4 days. Feed intake and physiological parameters: respiratory rate (RR), heart rate (HR), and rectal temperature (RT) were recorded twice a day. Blood was collected once a day and analyzed for serum concentration of glucose (Glc), triglycerides (TG), cholesterol (Chol), urea (Ur), creatinine (Crea), and total protein (TP) by enzymatic colorimetric method and cortisol (Cort) by radioimmunoassay. Results: Total dry matter intake (TDMI) was affected by WR. A decrease in TDMI was observed in WR groups compared to W100 group (effect, group, period, day, $group{\times}day$, $period{\times}day$: p<0.001). Also, WR resulted in a significant increase in RR, HR, RT in WR groups than in W100 group (effect, group: p<0.001). In addition, an increase in the serum concentration of Glc, TG, Chol, Ur, Crea, TP, and Cort was noted in WR groups (effect, group, period, day: p<0.001). Conclusion: This study has shown the ability of cows raised in a Mediterranean climate to cope with different levels of WR and thus reach a new equilibrium. As result, elucidates the important role of water as a limiting factor for livestock in environments with low water availability.