• Title/Summary/Keyword: Water distribution

Search Result 6,876, Processing Time 0.045 seconds

A Note on Approximation of Bottled Water Consumption Distribution: A Mixture Model (혼합모형을 이용한 생수소비 분포의 근사화에 대한 소고(小考))

  • Yoo, Seung-Hoon
    • Environmental and Resource Economics Review
    • /
    • v.11 no.2
    • /
    • pp.321-333
    • /
    • 2002
  • Approximating bottled water consumption distribution is complicated by zero observations in the sample. To deal with the zero observations, a mixture model of bottled water consumption distributions is proposed and applied to allow a point mass at zero. The bottled water consumption distribution is specified as a mixture of two distributions, one with a point mass at zero and the other with full support on the positive half of the real line. The model is empirically verified for household bottled water consumption survey data. The mixture model can easily capture the common bimodality feature of the bottled water consumption distribution. In addition, when covariates were added to the model, it was found that the probability that a household has non-consumption significantly varies with some variables.

  • PDF

Back Tracing Calculation Method for the Leakage Detection in Water Distribution System (상수관망에서 누수탐지를 위한 역추적계산법)

  • Kwon, Hyuk Jae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.5
    • /
    • pp.611-619
    • /
    • 2013
  • In this study, Back Tracing Calculation Method was developed to determine the leakage location and leakage amount. Previously developed determination method of monitoring location and newly developed Back Tracing Calculation Method were applied to the sample pipe network and real size pilot plant. After leakage was assumed in the pilot plant, leakage location and leakage amount could be traced by Back Tracing Calculation Method. From the results, it was found that Back Tracing Calculation Method can be applied for the leakage detection in water distribution system. Furthermore, this method can be applied for the pressure management or leakage detection as a pressure control method in water distribution system.

Methodology for determining optimal data sampling frequencies in water distribution systems (상수관망 데이터 수집의 최적 빈도 결정을 위한 방법론적 접근)

  • Hyunjun Kim;Eunhye Jeong;Kyungyup Hwang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.6
    • /
    • pp.383-394
    • /
    • 2023
  • Currently, there is no definitive regulation for the appropriate frequency of data sampling in water distribution networks, yet it plays a crucial role in the efficient operation of these systems. This study proposes a new methodology for determining the optimal frequency of data acquisition in water distribution networks. Based on the decomposition of signals using harmonic series, this methodology has been validated using actual data from water distribution networks. By analyzing 12 types of data collected from two points, it was demonstrated that utilizing the factors and cumulative periodograms of harmonic series enables similar accuracy at lower data acquisition frequencies compared to the original signals. Type your abstract here.

Study on Effect of Phase Separation of Bioethanol Blends Fuel by Water Contents (수분 함량에 따른 바이오에탄올혼합 연료유의 상 분리 영향성에 관한 연구)

  • KIM, JAE-KON;JEON, CHEOl-HWAN;MIN, KYONG-IL;KIM, SHIN;PARK, CHEON-KYU;HA, JONG-HAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.712-720
    • /
    • 2016
  • When bioethanol and water are mixed at a proper ratio, phase separation can occur because of the immiscibility of biobutanol with water. Phase separation in bioethanol blends fuels is a major problem for gasoline vehicle users due to effect of octane number and component corrosion. Thus, in this study, the phase separation of bioethanol was examined effect of bioethanol blends (E3 (3 vo.% bioethanol in gasoline), E5 and E10) in presence of water. The effect were evaluated behavior with phase separation test, simulation test of fuel tank in gas station according to water addition volume and it was investigated change of water content, bioethanol content and octane number for gasoline phase in bioethanol blends (E3, E5 and E10) every 1 week after water addition. The E3 occurred phase separation more easily than the E5 and E10 in small water contents because solubility of water on ethanol content difference in gasoline-ethanol. It was kept a initial level of water content, bioethanol content, and octane number by repeated sample replacing in simulation test of fuel tank.

The Fuel Characteristics of Diesel by Water Contamination (수분오염에 따른 경유의 연료적 특성)

  • Lim, Young-Kwan;Won, Ki-Yoe;Kang, Byung-Seok;Park, So-Hwi;Park, Jang-Min;Kang, Dea-Hyuk
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.385-390
    • /
    • 2020
  • It rains heavily, such as long rain and typhoons, during a typical rainy season in Korea. In this season, several fuel contamination accidents by water and vehicular problems caused by water contaminated fuel occur. Many research groups have studied the effects of water contaminated fuel on vehicles and environment. However the characteristics of water contaminated fuel have not been studied. In this study, we prepared diesel samples with a constant ratio of water (0~30 volume %) using an emulsifier. Then, we analyzed these diesel samples for their representative fuel properties. In the analytical results, diesel with 30% water showed an increase in fuel properties such as density (823→883 kg/㎥), kinematic viscosity (2.601→6.345 ㎟/s), flash point (47→56℃), pour point (-22→2℃), CFPP (cold filter plugging point) (-17→20℃) and copper corrosion number (1a→2a). The low temperature characteristics, such as low pour point and CFPP, blocks the fuel filter in the cold season. In addition, water contaminated diesel decreases lubricity (190→410 ㎛) under high frequency reciprocating rig (HFRR) and derived cetane number (54.81→34.25). The low lubricity of fuel causes vehicle problem such as pump and injector damage owing to severe friction. In addition, the low cetane diesel fuel increases exhaust gases such as NOx and particulate matters (PM) owing to incomplete combustion. This study can be used to identify the problems caused by water contamination to vehicle and fuel facilities.

Assessment of temperature-dependent water quality reaction coefficients and monthly variability of residual chlorine in water distribution networks (수온 변화에 따른 상수관망 내 수질반응계수 추정 및 월별 잔류염소농도 분포 변화 분석)

  • Jeong, Gimoon;Choi, Taeho;Kang, Doosun;Lee, Juwon;Hwang, Taemun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.705-720
    • /
    • 2023
  • In South Korea, ongoing incidents related to drinking water quality have eroded consumer trust. Specifically, beyond quality incidents, there have been complaints about taste, odor, and other issues stemming from the presence of chlorine. To address this, water service operators are employing various management strategies from both temporal (scheduling) and spatial (rechlorination) perspectives to ensure uniform and safe distribution of chlorine residuals. In this study, we focus on the optimal monthly management of chlorine residuals, based on water distribution network analysis. Water quality reaction coefficients, including bulk fluid and wall reaction coefficients, were estimated through lab-scale tests and EPANET water quality simulations, respectively, accounting for temperature variations in a large-scale water distribution network. Utilizing these estimated coefficients, we examined the monthly variations in chlorine residual distribution under different chlorine injection conditions. The results indicate that the efficient concentration for chlorine injection, which satisfies the residual chlorine limit range, varies with temperature changes. Consequently, it is imperative to establish a specific and quantitative chlorine injection plan that considers the accurate spatial distribution of monthly chlorine residuals.

Evaluation of Irrigation Vulnerability Characteristic Curves in Agricultural Reservoir (농업용 저수지 관개 취약성 특성 곡선 산정)

  • Nam, Won-Ho;Kim, Taegon;Choi, Jin-Yong;Kim, Han-Joong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.6
    • /
    • pp.39-44
    • /
    • 2012
  • Water supply capacity and operational capability in agricultural reservoirs are expressed differently in the limited storage due to seasonal and local variation of precipitation. Since agricultural water supply and demand basically assumes the uncertainty of hydrological phenomena, it is necessary to improve probabilistic approach for potential risk assessment of water supply capacity in reservoir for enhanced operational storage management. Here, it was introduced the irrigation vulnerability characteristic curves to represent the water supply capacity corresponding to probability distribution of the water demand from the paddy field and water supply in agricultural reservoir. Irrigation vulnerability probability was formulated using reliability analysis method based on water supply and demand probability distribution. The lower duration of irrigation vulnerability probability defined as the time period requiring intensive water management, and it will be considered to assessment tools as a risk mitigated water supply planning in decision making with a limited reservoir storage.

Study on the characteristics of night flow components for leakage management in district metered area (배수구역별 누수관리를 위한 야간유량성분 특성연구)

  • Koo, Ja-Yong;Jang, Kwang-Ho;Kim, Min-Cheol
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.6
    • /
    • pp.871-879
    • /
    • 2009
  • The Korea has high population density, so the precipitation per capita is only one tenth to world average. The water resource in Korea is insufficient. But the leakage in the water distribution system is about 25%, and it is lower than other countries where water utilities are managed well. The pipelines' management also is getting worse because the leakage in the pipelines lower the ground density surrounding pipes. So, managing the leakage in the water distribution system is very important in the view of increasing the water resources and doing the efficient management of the pipeline system. Accordingly this study aimed to conduct a cause-analysis with scientific approaches considering key local factor related to water loss of distribution system and derive better performance indicators which are able to evaluate the real state of water loss management reasonably. Also this research aimed to develop a methodology capable of judging condition of infrastructure of water distribution system.

Quantifying Energy Consumption to the Level of Service Pressure in Water Distribution Network

  • Marlim, Malvin S.;Choi, Jeongwook;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.458-458
    • /
    • 2022
  • It is essential to reduce global carbon emissions, mainly from energy use. The water supply and distribution sector is a vital part of human society and is one of the primary energy consumers. The procurement and distribution of water require electricity to operate the pump to deliver water to users with sufficient pressure. As the water users are spatially distributed over a wide area, the energy required to deliver water to each user differs depending on the corresponding supplying element (reservoir, tank, pipe, pump, and valve). This difference in energy required for each user also comes with a difference in pressure availability which affects the level of service for individual users and the whole network. Typically, there is a disproportion where users close to the source experience excessively high pressure with low energy consumption. In contrast, remote users need more energy to get the minimum pressure. This study proposes the Energy Return Index (ERI) to quantify the pressure return from particular energy consumption to supply water to each node. The disproportionality can be quantified and identified in the network using the proposed ERI. The index can be applied to optimize the network elements such as pump operation and tank location/size to reach a balanced energy consumption with the appropriate level of service.

  • PDF

Heterotrophic Bacteria in Terms of Free Chlorine Residuals in water Distribution Systems (수돗물 배급수 계통의 유리잔류염소농도에 따른 종속영양세균의 거동에 관한 연구)

  • Yoon, Tae-Ho;Lee, Yoon-Jin;Rhee, Ok-Jae;Lee, Euk-Wang;Kim, Hyun;Lee, Dong-Chan;Nam, Sang-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.3
    • /
    • pp.9-18
    • /
    • 2002
  • This study was to observe the occurrence of heterotrophic bacteria in terms of free chlorine residuals in two different water distribution systems belong to both K and Y water treatment plant. The data analyzed in this study showed that in distribution systems(DS), the free chlorine residuals were decreased from 0.10 to 0.56 ㎎/1 for K, and 0.51 and 0.78 ㎎/l for Y The decay of free chlorine were clearly higher in both March and August than those in January. The HPC in DS were ranged from 0 to 40 CFU/ml for K,0 to 270 CFU/ml for Y, on R2A medium. In particular, Its level was relatively high at consumers' ground storage tanks, taps and point-of-end area of Y, The predominant genera found in the distribution systems were Acinetobacter, Sphingomonas (branch of Pseudomonas), Microroccus, Bacillus, Staphylococcus. The diversity of heterotrophic bacteria was increased in the end-point area. Most of them were either encapsulated cells or cocci of gram-positve. In conclusion, the point-of-end area in distribution systems showed that the longer flow distance from WTP the greater diversity and higher level of heterotrophic bacteria due to the significant decay of free chlorine residuals.