• Title/Summary/Keyword: Water depth estimation

Search Result 261, Processing Time 0.03 seconds

Estimation of Frequency Based Snowfall Depth and Maximum Snowfall Depth in 2010, Korea (한반도 확률적설량 산정과 2010년 최심신적설량 빈도해석)

  • Kim, Yon-Soo;Park, Moo-Jong;Kim, Soo-Jun;Moon, Ki-Ho;Kim, Hung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1476-1480
    • /
    • 2010
  • 최근에 한반도에 발생한 강설은 국민생활의 교통장애와 같은 생활의 불편함뿐만 아니라 농축산업의 광범위한 피해를 발생시키고 있다. 이번 2010년 1월 서울에는 40년만에 최대 적설량을 기록하였고 교통 및 도시 기능이 마비되는 등의 피해가 발생하였다. 본 연구에서는 기상청 산하 61개 지점 최심신적설량을 이용하였으며, 최근 적설량의 확률빈도규모를 고려하여 빈도별 확률적설량을 산정하고 확률적설량도를 작성하였다. 확률분포형은 확률가중모멘트법(PWM)을 이용하였고 적정분포형으로는 Gamma 2변수를 선정하였으며, 과거 적설량 자료를 검토한바 2004년, 2005년의 최심신적설량 극값은 평균 300년 빈도, 이번 2010년 1월 서울은 약 200년, 인천, 수원, 이천은 약 50년, 춘천은 약 30년 빈도인 것으로 분석되었다. 이러한 연구 결과는 적설량에 따른 방재 기준의 개선방안 및 재설정 방향 제시에 기초자료로 활용될 수 있을 것이다.

  • PDF

Estimation of Sea Water Transport by Water-depth Variation at Pier-bridge between Busan New-port and the Nakdong River Estuary (부산 신항-낙동강 하구역 연결잔교부의 물질수송 해석(II) - 잔교주변 해저수심변화에 따른 해수소통량 예측 -)

  • Lee, Young-Bok;Ryu, Seung-Woo;Yoon, Han-Sam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.3
    • /
    • pp.197-203
    • /
    • 2008
  • This study analyzed the characteristics of sea water transport between Busan New-port and the Nakdong River estuary. Numerical modeling was used to evaluate the characteristics of the tidal current. Numerical simulations of three different topographies were conducted. The results are summarized as follows: 1) The volume of sea water transport was reduced by $0.7{\sim}18.4%$ when water depth was decreased at Busan New-port (10 m); 2) The volume of sea water transport was increased by $3.5{\sim}21.9%$ when a channel (depth 5 m) was constructed in the direction of the Nakdong River estuary.

  • PDF

Estimation methods of maximum scour depth in steep gravel-bed bend channel (급경사 자갈하상 만곡수로의 최대세굴심 산정공식 평가)

  • Cho, Jaewoong;Nam, A-Reum;Woo, Tae Young;Park, Sang Deog
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.6
    • /
    • pp.529-536
    • /
    • 2016
  • The existing methods to estimate the maximum scour depth in the bend of steep gravel bed channel have been evaluated by the hydraulic movable-bed experiments. In the $90^{\circ}$ bend steep-slope channel paved with the fluvial gravels which are uniform in size and have a mean diameter of 43mm, the maximum scour depths due to the flow discharge and the gradient of bed slope have been investigated and compared with the scour depth computed from the equations. The local scour has occurred in conditions that the bed slope is steeper than 0.02 and the $F_r$ is greater than 0.95. Except Lacey's equation and Zeller's equation, the existing methods computing the maximum scour depth overestimate the maximum scour depth in the steep channel with the very coarse gravel bed. However, Lacey's equation with the bed material size and Zeller's equation considering the approach channel gradient and the bend angle may be relatively used to estimate the scour depth in bend of the steep gravel-bed river.

Application of Percentile Rainfall Event for Analysis of Infiltration Facilities used by Prior Consultation for LID (Low Impact Development)

  • Kwon, Kyung-Ho;Song, Hye-Jin
    • KIEAE Journal
    • /
    • v.15 no.5
    • /
    • pp.5-12
    • /
    • 2015
  • Purpose: Retention and infiltration of small and frequently-occurring rainfall by LID facilities account for a large proportion of the annual precipitation volume. Based on 4 standard facilities such as Porous Pavement, Infiltration Trench, Cylindrical Infiltration Well, Rectangular Infiltration Well by Seoul Metropolitan Handbook of the Prior Consultation for LID. The total retention volume of each facility was calculated according to the type and size. The Purpose of this study is to find out the quantitative relationship between Percentile Rainfall Event and Design Volume of Infiltration Facilities. Methode: For the estimation of Percentile Rainfall Event, Daily Precipitation of Seoul from 2005 to 2014 was sorted ascending and the distribution of percentile was estimated by PERCENTILE spreadsheet function. The managed Rainfall Depth and Percentile of each facility was calculated at the several sizes. In response to the rainwater charge volume of 5.5mm/hr by the Category "Private large site", the 3 types of facilities were planned for example. The calculated Rainfall Depth and Percentile were 54.4mm and 90% by the use of developed Calculation-Module based on the Spreadsheet program. Result: With this Module the existing Designed Infiltration volume which was introduced from Japan was simply converted to the Percentile-Rainfall-Event used in USA.

Determination of Bridge Scour Depth Considering Flow Conditions and Bed Characteristics (흐름특성과 하상특성을 동시에 고려한 교량세굴심 산정에 관한 연구)

  • Choi, Jong-Suk;Yeo, Woon-Kwang;Kim, Mun-Mo
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.6
    • /
    • pp.893-899
    • /
    • 2003
  • In this study, a realtime bridge scour monitoring system was installed and operated to measure the real scour depths in relatively hard and rocky bottom. And riverbed change at before and after flood was investigated by GPR(Ground Penetrating Radar) to check the rationality of measured values. As the result of this study, it was revealed the inaccuracy of equilibrium scour depth estimation through the bridge scout equations because most of the equations do not reflect the differences of geological characteristics, evaluated the real scour depths considering both bed and flow conditions.

Sensitivity analysis of effective imperviousness estimation for small urban watersheds (도시 소유역 유효불투수율의 민감도 분석)

  • Kim, Dae Geun;Ko, Young Chan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.2
    • /
    • pp.181-187
    • /
    • 2009
  • In this study, a runoff hydrograph and runoff volume were calculated by using the kinetic wave theory for small urban watersheds based on the concept of low impact development(LID), and the effective imperviousness was estimated based on these calculations. The degree of sensitivity of the effective imperviousness of small watersheds to the impervious to pervious area ratio, infiltration capability, watershed slope, roughness coefficient and surface storage depth was then analyzed. From this analysis, the following conclusions were obtained: The effective imperviousness and paved area reduction factor decreased as the infiltration capability of pervious area increased. As the slope of watersheds becomes sharper, the effective imperviousness and the paved area reduction factor display an increasing trend. As the roughness coefficient of impervious areas increases, the effective imperviousness and the paved area reduction factor tend to increase. As the storage depth increases, the effective imperviousness and the paved area reduction factor show an upward trend, but the increase is minimal. Under the conditions of this study, it was found that the effective imperviousness is most sensitive to watershed slope, followed by infiltration capability and roughness coefficient, which affect the sensitivity of the effective imperviousness at a similar level, and the storage depth was found to have little influence on the effective imperviousness.

Development and Application of Paddy Storage Estimation Model During Storm Periods (홍수기 논의 저류량 산정모형 개발 및 적용)

  • Kim, Seong-Joon;Kim, Sun-Joo;Yoon, Chun-Gyeong;Kwon, Hyung-Joong;Park, Geun-Ae
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.6
    • /
    • pp.901-910
    • /
    • 2003
  • The hydrologic behavior of paddy field depends largely on the irrigation and levee height management by farmers. The storage and drainage amount of paddy for storm events certainly influences the stream discharge. To understand the paddy storage effect during storm periods, a daily paddy water balance model embedding farmer's water management was developed by using 4 years (1996, 1997, 2001, 2002) field experimental data at 2 locations (Suwon and Yeoju) From the modeling, it was possible to simulate the daily ponding depth of paddy by treating paddy levee height and threshold pending depth indicating irrigation time as 10 days average parameters of the model. The storage amount(306.9 mm to 343.6 mm) showed little deviation to rainfall amount(425.1 mm to 850.8 mm).

Acoustic-based estimation of fish stocks in Widas Reservoir, East Java, Indonesia

  • Siti Nurul Aida;Agus Djoko Utomo;Safran Makmur;Tuah Nanda M. Wulandari;Khoirul Fatah;Yosmaniar;Indra Suharman;Ulung Jantama Wisha
    • Fisheries and Aquatic Sciences
    • /
    • v.27 no.4
    • /
    • pp.240-255
    • /
    • 2024
  • Widas Reservoir is situated in an area of 570 ha in the Pajaran Village, Madiun Regency, East Java Province, Indonesia, playing an essential role in fisheries, with the average fish catch per year of about 283 tons/year. This study explores the standing stock, growth parameters, mortality, and exploitation rates of several dominant fishes in Widas Reservoir. This study was carried out from February to November 2019. Fish stocks were estimated using acoustic tools, fish catch records, and sizes collected by local enumerators. Fish length frequency sampling was conducted on several dominant fish species, such as Oreochromis niloticus, Barbonymus gonionotus, and Osteochilus vittatus. Based on the length-frequency data, estimating fish population dynamics, the fish population dynamics (infinitive length (L) and growth coefficient (K)) estimation was run in a time series using the Fish Sock Analysis Tool, II (FISAT II) program package. Moreover, the estimation of natural mortality parameters, the fishing mortality parameter, and the exploitation rate was also performed. The approximated overall fish stock in the Widas Reservoir was about 79,848 kg, which lowered with the increase in water depth. Of particular concern, in the surface layer at a depth between 1-5 m, the fish stock reached 58,813 kg, while in the deeper zone (> 15 m), the value significantly lowered by about 98%, reaching 1,219 kg. These results indicate an overfishing in the Widas Reservoir. The value of the exploitation rate (E) of B. gonionotus was 0.748, O. niloticus 0.8, and O. vittatus 0.7, respectively, proving the overfishing states occurred in the study area. Therefore, regulations governing the number of catches and the use of fishing gear are crucial in Widas Reservoir, particularly the use of lift and gill nets with a mesh size of less than 2 cm.

Estimation of Penetration Depth Using Acceleration Signal Analysis for Underwater Free Fall Cone Penetration Tester

  • Seo, Jung-min;Shin, Changjoo;Kwon, OSoon;Jang, In Sung;Kang, Hyoun;Won, Sung Gyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.202-207
    • /
    • 2020
  • A track-type underwater construction robot (URI-R) was developed by the Korea Institute of Ocean Science & Technology. Because URI-R uses tracks to move on the seabed, insufficient ground strength may hinder its movement. For smooth operation of URI-R on the seabed, it is important to determine the geotechnical properties of the seabed. To determine these properties, standard penetration test (SPT), cone penetration test (CPT), and sampling are used on land. However, these tests cannot be applied on the seabed due to a high cost owing to the vessel, crane, sampler, and analysis time. To overcome these problems, a free fall cone penetration tester (FFCPT) is being developed. The FFCPT is a device that acquires the geotechnical properties during impact/penetration/finish phases by free fall in water. Depth information is crucial during soil data acquisition. As the FFCPT cannot measure the penetration depth directly, it is estimated indirectly using acceleration. The estimated penetration depth was verified by results of real tests conducted on land.

Estimation of Depth of Improvement by Dynamic Compaction with Soil Conditions (지반조건에 따른 동다짐의 개량심도 평가)

  • Lee, Bong-Jik;Youn, Jun-Sik;Lee, Jong-Kyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.3
    • /
    • pp.55-61
    • /
    • 2005
  • Dynamic compaction is a ground improvement technique which is particularly effective for loose granular soils. It has also been used successfully to the cohesive soils with high void ratio, and wastes and fills. For the design of dynamic compaction method, prediction of depth of improvement is very important. The depth of improvement is influenced not only by compaction energy but also by many parameters such as grid spacing, soil property, degree of saturation and site conditions. Based on the test results, the depth of improvement were evaluated with considering compaction energy, soil type and ground water level.

  • PDF