• Title/Summary/Keyword: Water demand

Search Result 1,848, Processing Time 0.032 seconds

Optimization of Multi-reservoir Operation with a Hedging Rule: Case Study of the Han River Basin (Hedging Rule을 이용한 댐 연계 운영 최적화: 한강수계 사례연구)

  • Ryu, Gwan-Hyeong;Chung, Gun-Hui;Lee, Jung-Ho;Kim, Joong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.8
    • /
    • pp.643-657
    • /
    • 2009
  • The major reason to construct large dams is to store surplus water during rainy seasons and utilize it for water supply in dry seasons. Reservoir storage has to meet a pre-defined target to satisfy water demands and cope with a dry season when the availability of water resources are limited temporally as well as spatially. In this study, a Hedging rule that reduces total reservoir outflow as drought starts is applied to alleviate severe water shortages. Five stages for reducing outflow based on the current reservoir storage are proposed as the Hedging rule. The objective function is to minimize the total discrepancies between the target and actual reservoir storage, water supply and demand, and required minimum river discharge and actual river flow. Mixed Integer Linear Programming (MILP) is used to develop a multi-reservoir operation system with the Hedging rule. The developed system is applied for the Han River basin that includes four multi-purpose dams and one water supplying reservoir. One of the fours dams is primarily for power generation. Ten-day-based runoff from subbasins and water demand in 2003 and water supply plan to water users from the reservoirs are used from "Long Term Comprehensive Plan for Water Resources in Korea" and "Practical Handbook of Dam Operation in Korea", respectively. The model was optimized by GAMS/CPLEX which is LP/MIP solver using a branch-and-cut algorithm. As results, 99.99% of municipal demand, 99.91% of agricultural demand and 100.00% of minimum river discharge were satisfied and, at the same time, dam storage compared to the storage efficiency increased 10.04% which is a real operation data in 2003.

Rainwater Harvesting Potential in a New Residential Area in North Bujumbura, Burundi

  • Kheria, Mfuranzima;Kang, Daeseok;Sung, Kijune
    • Journal of Environmental Science International
    • /
    • v.25 no.3
    • /
    • pp.447-456
    • /
    • 2016
  • Access to clean and affordable water is one of the fundamental human rights because water is essential to life and a foundation for socioeconomic development of any country in the world. Despite the efforts to secure water supply in Burundi, the amount of water supplied by public utilities does not meet the demand of the population because population keeps increasing with fluctuation of weather conditions. This study selected north Bujumbura that is a sprawling new residential area in the western part of Burundi as a case to investigate the potential of rainwater harvesting in meeting water demand of the country. Based on a long-term average monthly precipitation in the region, the rainwater harvesting potential was assessed as a function of roof sizes, number of households, and runoff coefficients of roof materials. For the entire region of north Bujumbura, the current water supply capacity of the local water company combined with the rainwater harvesting potential resulted in the water surplus of $468,604.1m^3/yr$. Although three communes among them still showed water deficit in dry season, they still got help from rainwater to relieve their water shortage. This suggests that at the regional scale, proper storages and water quality control for harvestable rainwater could contribute to relieving the regional water shortage and allow the population growth.

Development of Operation Rules in Agricultural Reservoirs using Real-Time Water Level and Irrigation Vulnerability Index (실시간 저수위 및 용수공급 취약성 지표를 활용한 농업용 저수지 운영 기준 개발)

  • Nam, Won Ho;Choi, Jin Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.77-85
    • /
    • 2013
  • The efficient operation and management strategies of reservoirs in irrigation periods of drought events are an essential element for drought planning and countermeasure. Korea Rural Community Corporation has developed the real-time water level observation system of agricultural reservoirs to efficiently operate reservoirs, however, it is not possible to predict drought conditions, and only provides information of current situation. Hence, it is necessary to evaluate accurate irrigation vulnerability and efficiently reservoir operation rules using current water level. In this paper, the improvement methods of reservoir operation planning were developed with water supply vulnerability characteristic curves comparing to automatic water gauge at agricultural reservoirs. The 11 reservoirs were simulated applying the reservoir operation rules which was determined by irrigation vulnerability characteristic curves criteria and real time water level, and evaluated water supply situation in 2012 year. The analysis of results can be identified probabilistic possibility of water supply failures compared with the existing reservoir operation criteria. These results of efficient reservoir operation rules can be achieved enable irrigation planners to optimally manage available water resources for decision making, and contributed to maintain the water supply according to demand strategy for agricultural reservoirs management.

Implementation of Evaluation System of Water Quality for Branches of Geum River Using Fuzzy Integral (퍼지 적분을 이용한 금강지천의 수질오염 평가 시스템 구현)

  • Han, Seok-Soon;Kim, Hong-Ki;Lee, Kyung-Ho;Woo, Sun-Hee;Kim, Jai-Joung;Chung, Keun-Yook
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.10
    • /
    • pp.1-8
    • /
    • 2006
  • The new system evaluating the pollution of the water quality for the branches of geum river using the fuzzy integral was proposed in this study. In this paper, the five individual factors, such as BOD(biochemical oxygen demand), COD(chemical oxygen demand), SS(suspended solids), T-N(total nitrogen), and T-P(total phosphorus) are selected. The measurement of fuzzy integral was determined depending on the degree of how they affect the pollution of water quality. The real values for the five factors measured and obtained from the branches of the geum river was normalized to ranging from 0 to 1. Finally, using the fuzzy integral, the degree of the pollution for the branches of geum river was expressed as the real numerical number. As a result, it appears that this approach can be proposed as the new system evaluating the pollution of the water quality for the branches of the geum river.

  • PDF

Prospect and strategies of seawater desalination plant in Asia major countries (아시아 주요국의 해수담수화 플랜트 시장전망과 진출방안)

  • Sohn, Jin-Sik;Han, Ji-Hee;Kim, Suk-Hwa;Sheen, Dong-Woo;Lim, Jae-Han
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.2
    • /
    • pp.157-164
    • /
    • 2010
  • Seawater desalination has vest interest in terms of ultimate water resources for the countries suffering lack of water supply. Water demand is steadily increasing due to the population growth and industrialization in Asia. The objectives of this study are to prospect the desalination market in Asia countries including China, India and Singapore, and to propose possible strategies of getting through Asia water market. Water supply in China is increasing up to $5,322,060m^3$/d in 2015. Northeast coastal areas such as Tianjin, Shandong, Hubei, and Liaoning are expected rapid increase for water demand. The investment of water supply in India would be 1.74 billion dollars during 2006 to 2015. Chennai, Kutch, and Pondicherry have possibility in introducing seawater desalination plants. Singapore is focusing on water reuse, and operating three NEWater plants (water reuse plants). BOT with total solution providing financing, construction, operation etc. is an adequate strategy to getting through China water market, while desalination plant project connecting with power plant is desirable in India. The cooperative system with Korea and Singapore creates synergy effect regarding planning and operating experience of Singapore and EPC ability of Korea.

Network Modeling of Paddy Irrigation System using ArcHydro GIS - ANGO Agricultural Water District - (ArcHydro를 이용한 GIS기반의 관개시스템 네트워크 모델링 - 안고농촌용수구역을 대상으로 -)

  • Park, Geun-Ae;Park, Min-Ji;Jang, Jung-Seok;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.1
    • /
    • pp.73-83
    • /
    • 2007
  • Network modeling of irrigation system that links irrigation facilities with stream is necessary to establish complicated rural water management system and to manage agricultural water effectively. This study attempted a network modeling for an agricultural water district called "ANGO" located in Anseongcheon watershed by connecting ArcHydro Model developed to control geographical information data in the field of water resources and AWDS(Agricultural Water Demand & Supply Estimation System) developed by KRC (Korea Rural Community & Agriculture Corporation). Network modeling was embodied by build topology between spatial objects of total 70 agricultural irrigation facilities (24 reservoirs, 18 pumping stations, 28 weirs) and stream network using ArcHydro Model. In addition, new menus were added in ArcGIS system for query and visualization of text-based AWDS outputs such as irrigation facilities information, water demand and supply analysis.

  • PDF

Development of Continuous Real-time COD Measurement Sensor with Double Beam and Multiple Wavelength Analysis (더블 빔 구조, 다파장 분석을 적용한 연속식 실시간 COD 측정 센서 개발)

  • Lee, Joon-Seok;Shin, Daejung;Hyoung, Gi-Woo;Ryu, In-Jae
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.272-277
    • /
    • 2014
  • At present, the index of chemical oxygen demand (COD) is widely used as an indicator of organic water pollution with biochemical oxygen demand (BOD). But, traditional COD measurement method are not only with various chemical reagents exhausted, but also long time consumed, the operation procedure and the modification are much professional. This paper reported a novel COD measurement system using double-beam and multiple wavelength analysis UV-VIS spectrometries. It consists of pulsed xenon lamp, two-way optical fiber, optical switch, spectrometer and main processor. Proposed COD measurement system obtains any spectral information of water sample (KHP standard sample and two river water and wastewater) and reference sample (distilled water) in the range of 200~520 nm, corresponding to the COD concentration from 0 to 300 mg/L through calculating the UV absorbance. The system show improved precision and can work continuously fast at time interval about 25 seconds.