• Title/Summary/Keyword: Water content ratio

Search Result 1,920, Processing Time 0.035 seconds

Performance Evaluation and Improvement of Medium and Small Scale Rice Polishers(II) - medium scale rice polisher - (중.소형 연미기의 성능평가 및 성능개선에 관한 연구(II) - 중형 연미기에 대하여 -)

  • 정종훈;권홍관
    • Journal of Biosystems Engineering
    • /
    • v.23 no.5
    • /
    • pp.445-456
    • /
    • 1998
  • This study was carried out to evaluate the performance of a medium scale rice polisher of 2.5 t/h and to improve its performance for producing the clean rice with high quality. The maximum internal pressure, broken rice ratio. whiteness in the rice polisher were investigated, and the effects of outlet resistance, water spraying rate, shaft revolution speed and rice moisture content on the polishing performance were analyzed to find out proper operating conditions. The conclusions of this study were as follows: 1. In the performance evaluation of the polisher, the broken rice ratio increment of 0.1%, the max. internal pressure of about 11 N/${cm}^2$, and whiteness increment of 2.2~3.7 resulted at the conditions of 20 PS driving power, 950 rpm, 150 cc/min water spraying rate, 44.1 Nㆍcm outlet resistance and about 15% rice moisture content. 2. Though max. internal pressure and whiteness at the 17% rice moisture content were higher than those at the 15% moisture content under the same operating conditions of the polisher, but the broken rice rate at the 17% moisture content was absolutely low compared with that at 15% moisture content. The water spraying effect to reduce broken rice and to increase whiteness was much significant at the 15% moisture content not significant at 17% moisture content. 3. The main parameter of the performance was outlet resistance, and low resistance of about 44.1 Nㆍcm was recommended at the polisher. 4. The proper water spraying rate in the polisher was about 150 cc/min. 5. As the shaft revolution speed decreased from 950 rpm and 800 rpm to 650 rpm, the broken rice ratio increased and whiteness decreased. 6. As the driving power of the polisher increased from 20 PS to 30 PS, the max. internal pressure decreased by about 1~2.5 N/${cm}^2$ and whiteness increased by about 1~2, but the broken rice rate was not changed. 7. The proper operating conditions of the polisher seemed to be the revolution speed of 800-950 rpm, the water spraying rate of about 150 cc/min, the oulet resistance of about 44.1 N.cm and 30 PS driving power.

  • PDF

The Study on the Characteristic of Cooked Rice According to the Different Coating Ratio of Mulberry Leaves Extracts (뽕잎추출액코팅농도에 따른 뽕잎쌀밥의 품질에 관한 연구)

  • 김애정;노정옥;우경자;최원석
    • Korean journal of food and cookery science
    • /
    • v.19 no.5
    • /
    • pp.571-580
    • /
    • 2003
  • The purpose of this study was to assess the optimum coating ratio for rice, using various ratios of mulberry leaves extract, 1.0, 1.5, and 2.0%, and to determine the optimum ratio of added water, in proportion to the total weight of mulberry rice. The moisture content of the soaked rice, and the optimum water uptake rate, moisture content of the cooked rice, as well as its blue and color values, mechanical characteristics, internal structure and sensory evaluation, were analyzed. The statistical data analyses were completed using the SAS program. The results are summarized as follows: The moisture content of mulberry rice was less than that of raw rice. The average optimum water uptake of the soaked mulberry rice at the different water temperatures, 10, 20 and 30, was 20% of the total weight of the raw mulberry rice. As for the results of the sensory evaluation,; 140% water, in proportion to the total weight of raw mulberry rice, was judged to be the optimum. The average moisture content of the cooked mulberry rice was 45∼50%, but there was no significant difference in the various coating ratios. The blue value of the cooked mulberry rice awas highest on the first day of cooking. The L- and a-values decreased with increasing coating ratio, but the b-value increased under the same conditions. As for the mechanical characteristics,; the adhesiveness, hardness and springiness decreased during 2 days of storage. The internal structure of the mulberry rice, observed by SEM, showed a close structure on increasing the coating ratios of mulberry leaves extracts. It was concluded that the optimum coating ratio of mulberry rice and ratio of added water for cooking wereas 1.5 and 140%, respectively, in proportion to the total weight of raw mulberry rice.

A Study on Drying Shrinkage of the High-Strength Concrete using the Garnet (가네트를 활용한 고강도 콘크리트의 건조수축 특성 연구)

  • Jang Ju-Young;Yoon Yo-Hyun;Park Jung-Min;Kim Wha-Jung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.676-679
    • /
    • 2004
  • In this study, we considered the characteristic of drying shrinkage from age of high strength concrete with garnet minute powder to be industry by-product. The factors of experiment are unit water content$(160kg/m^3)$, water-binder ratio(30, $35\%$), fine aggregate ratio(40, 42, $44\%$), admixture replacement ratio(0, 10, $20\%$), admixture type(garnet minute powder, fly ash, blast-furnace slag). We make a comparative study of shrinkage about concrete with a passage of age(1, 3, 7, 14, 28, 56, 91 days). As a result of experiment, we reach a conclusion as follow. In the same mix condition, as unit water content and fine aggregate ratio go up, the drying shrinkage ratio increase. In the drying shrinkage ratio according to admixture replacement ratio, it goes up when admixture replacement Ratio increase in case of fly ash and blast-furnace slag. But, drying shrinkage ratio decrease when admixture replacement ratio increase in case of garnet minute powder.

  • PDF

Influence of Mixing Conditions on the Strength of Solidified Sandy Soils with Cement (배합조건이 시멘트혼합 사질토의 강도에 미치는 영향)

  • Yoo, Chan;Chang, Pyung-Wuck
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.6
    • /
    • pp.135-142
    • /
    • 2001
  • Laboratory experiment was performed to evaluate the influence of mixing conditions to the strength of solidified sandy soils with cement. The major physical factors considered in this experiment were the fine particles content(<$\sharp200%$), cement content(%) and water-cement ratio, and unconfined compressive strength test was performed on the samples at 7 and 28 cured day. The results of tests shows that when the cement content is relatively low (7~10 percents) the fine content in the sandy soils is very important, but when cement content is high the water-cement ratio became more important. It was appeared that in the range of the cement content of 7~10 percents, about 20~30 percents of fine content to the total sample weight is the optimum condition to get the maximum strength. In the case of the cement content of 13 percents, the strength of sample was considerably affected by the water-cement ratio rather than the fine content. In this paper, empirical equations were also developed and evaluated to verify the relationship among three factors by the multi-regression analysis.

  • PDF

Strength Properties of Polymer-Modified Mortar with High-Range Water- Reducing Agents (고성능 감수제를 첨가한 폴리머 시멘트 모르타르의 강도 특성)

  • 이윤수;주명기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.811-815
    • /
    • 2003
  • The effects of high-range water-reducing agent (WRA) content and polymer-cement ratio on the strength properties of autoclaved SBR-modified mortars with WRA are examined. As a result, the flexural strength of the autoclaved SBR-modified mortars with WRAs tends to increase with increasing WRA content and polymer-cement ratio, and reaches a maximum at a WRA content of 2.0%. The compressive strength of the autoclaved SBR-modified mortars with WRAs is inclined to increase with increasing WRA content and polymer-cement ratio, and reaches a maximum at a WRA content of 2.0% and a polymer-cement ratio of 10%. From the test results, the addition of the WRAs is effective for improving strength properties of the autoclaved SBR-modified mortars.

  • PDF

Effect of Air Void Organization to Frost-Resistance in High-Strength Concrete (고강도 콘크리트의 동해저항에 관한 기포조직의 영향)

  • 김생빈;홍찬홈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.5-10
    • /
    • 1991
  • This study was performed to find out the effect about the spacing factor and durability factor to evaluate the durability of concrete in high-strength concrete with freezing and thawing as following each condition, 1) unit cement content : 500kg/$\textrm{m}^3$, 550kg/$\textrm{m}^3$ 2) water/cement ratio : 25%, 30%, 35% 3) air content : below 1.5%, 1.6~3.5%, 4~6%, over 7% From the results tested, a variation of air content was more effective to the durability of concrete than that of water/cement ratio and unit cement content.

  • PDF

On the Growth and Total Nitrogen Changes of Glycine max. Artificial Plant Communities, Grown in Sandy Loam Soil withe a Controlled Moisture Content (토양함수량의 조절에 의한 Glycine max. 인공군업의 성장과 총질소량의 변동에 관하여)

  • 임양재
    • Journal of Plant Biology
    • /
    • v.14 no.3
    • /
    • pp.21-28
    • /
    • 1971
  • Dry matter production, leaf area growth and total nitrogen changes were studied in Glycine max. soybean communities, which were grown in sandy loam soils controlled to provide various moisture levels, i.e., 5-7%(level 1), 8-10%(level 2), 11-13%(level 3), 14-15%(lev디 4), 17-20%(level 5) and 22-24%(level 6). A summary of the results is shown. The maximum dry matter production of leaves, stems and nodules and the maximum leaf area per unit area were at level 5, but the maximum of root dry matter production was at level 4. Total nitrogen content of the soybean plant decreased with growth, but each level of soil moisture content also showed a little difference. Water content of the plant decreased with plant age and soil water deficiency, especially in roots and nodules. Nodule formation increased in proportion to soil moisture content. total nitrogen content of the soil on which the soybeans grew, increased from 0.23% before sowing to 0.30% at 100 days after sowing. It seems that soil water content acts as a linear factor in the elongation or dry weight increase of shoots and roots until increasing to level 5. Considering the pattern of plant growth through analysis of the shoot and root dry weight ratio, or the photosynthetic organ and non-photosynthetic organ dry weight ratio, the asymptote of plant growth at a high soil water content exceeded that at a low soil water content.

  • PDF

Durability of High-Fluidity Polymer-Modified Mortar (고유동 폴리머 시멘트 모르타르의 내구성)

  • Yoon Do Yong;Lee Youn Su;Joo Myung Ki;Jung In Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.691-694
    • /
    • 2004
  • The effects of polymer-cement ratio and antifoamer content on the setting time and durability of high-fluidity polymer-modified mortars using redispersible polymer powder are examined. As a result, the setting time of the polymer-modified mortars using redispersible polymer powder tend to delayed with increasing polymer-cement ratio, regardless of the antifoamer content. The water absorption and chloride ion penetration depth of the high-fluidity polymer-modified mortars using redispersible polymer powder decrease with increasing polymer-cement ratio and antifoamer content. The water absorption and chloride ion penetration improvement is attributed to the improved bond between cement hydrates and aggregates because of the incorporation of redispersible polymer powder.

  • PDF

Study on Semi-Dry Process Developement of BP's Sludge by Non-Heating Manufacture Method (비가열 제조법에 의한 BP슬러지의 반건조 제조공정 개발에 관한 연구)

  • Kim, Byeong-Ki;Kim, Jae-Hwan;Kang, Seok-Pyo;Kang, Hye-Ju
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.4
    • /
    • pp.313-319
    • /
    • 2015
  • This study relates to an investigation into semi-dry manufacturing process of BP sludge based on non-heating production method. In this study, we conducted a research into reduction of water content ratio which arose from mixture of BP by-products of high water content ratio(50% or higher) with industrial by-products to use such BP by-products as construction materials in large quantity. We measured the reduction rate of water content ratio at the feeding ratio of water content reduction agent(1:0.5) in BP by-products. The results showed that water content ratio was the lowest with 18.5% in the mixture of PA+CFA(1:0.5). Moreover, water content ratio ranged between approximately 9.2% and 11.4% at the age of 1 day to 2 days at the aging temperature of $20-30^{\circ}C$, suggesting that the water content ratio was in the range within 10% which was a level suitable for use as construction material in this study. Meanwhile, we compared and evaluated the physical properties of non-heated BP by-products based on post-aging pulverization method. The results showed that there was no significant difference, depending on pulverization method. When production efficiency and economic feasibility were taken into consideration, it was found desirable to use fine particle pulverizer or pin mill enabling continuous production.

Fundamental Study on Evaluation method of Activity Factor of Fly Ash (플라이애시의 활성도지수 평가에 관한 기초적 연구)

  • Park, Sang-Joon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.5
    • /
    • pp.59-65
    • /
    • 2008
  • In the evaluation method of KS on the activity factor of fly ash, same amount of cement should be replaced with fly ash. Therefore, contradictory effects on concrete strength exist, i. e. strength decease due to low content of cement and strength increase of strength due to filling-pore-function of fly ash. European Committee for Standardization (CEN) specifies the method 1 to 4. adding fly ash without reducing the content of cement, for the evaluation method on activity factor of fly ash. This study investigates the applicability of the method 2 of CEN to mix design of concrete. The followings are derived ; There is a key ratio of f)y ash mixing which enhances the incremental ratio of mixing water to improve fluidity of mortar. The incremental ratio of mixing water is maximized about 11% ratio of fly ash mixing. Compressive strength most slightly increases at that ratio of fly ash mixing. Activity factor of fly ash increases as water-cement ratio becomes low and contents of fly ash becomes high. Moreover, quality of fly ash and condition of mix design affect the applicable amount of fly ash and available range of water-cement ratio. However, this method has some problems for practical purpose because activity factors of fly ash for some cases are over 1.0. Further research should be conducted to develop more useful method of evaluating activity factor of fly ash.