• Title/Summary/Keyword: Water circulation system

Search Result 476, Processing Time 0.023 seconds

Material Retention: A Novel Approach to Performance of Pigment Coating Colors (물질 보류 : 안료 코팅 처리를 위한 새로운 시도)

  • McKenzie, Ken;Rutanen, Anne;Lehtovuori, Jukka;Ahtikari, Jaana;Piilola, Teuvo
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2008.05a
    • /
    • pp.47-70
    • /
    • 2008
  • Cost efficiency is today the primary requirement in the paper and board industry. This has led therefore, to a greater preponderance of products with specifically designed functionality to take account of current industry needs. Continually increasing machine coating speeds together with these new coating colour components have put more emphasis on the importance of the correct rheology and water retention of the coating colours to achieve good runnability and end product quality. In the coating process, some penetration of the aqueous phase, to the base paper or board must occur to anchor the pre-coating to the base or the topcoat to the pre-coat. The aqueous phase acts as a vehicle not only for the binder, but also for the other components. If this water or material penetration is not controlled, there will be excessive material shift from the coating colour to the base, before immobilization of the coating colour will stop this migration. This can result in poor machine runnability, unstable system and uneven coating layer, impacting print quality. The performance of rheology modifiers or thickeners on the coating color have tended to be evaluated by the term, "water retention". This simple term is not sufficient to explain their performance changes during coating. In this paper we are introducing a new concept of "material retention", which takes note of the total composition of the coating colour material and therefore goes beyond the concept of only water retention. Controlled material retention leads to a more uniform z-directional distribution of coating colour components. The changes that can be made to z-directional uniformity will have positive effects on print quality as measured by surface strength, ink setting properties, print gloss, mottling tendency. Optical properties, such as light scattering, whiteness and light fastness delivery should also be improved. Additionally, controlled material retention minimizes changes to the coating colour with time in re-circulation giving less fluctuation in quality in the machine direction since it more closely resembles fresh coating for longer periods. Use of the material retention concept enables paper and board producers to have more stable runnability (i.e. lower process costs), improved end product quality (i.e. better performance of used chemicals) and/or optimized use of coating colour components (i.e. lower total formulation cost)

  • PDF

Evaluating Changes and Uncertainty of Nitrogen Load from Rice Paddy according to the Climate Change Scenario Multi-Model Ensemble (기후변화시나리오 다중모형 앙상블에 따른 논 질소 유출 부하량 변동 및 불확실성 평가)

  • Choi, Soon-Kun;Jeong, Jaehak;Yeob, So-Jin;Kim, Minwook;Kim, Jin Ho;Kim, Min-Kyeong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.5
    • /
    • pp.47-62
    • /
    • 2020
  • Rice paddy accounts for approximately 52.5% of all farmlands in South Korea, and it is closely related to the water environment. Climate change is expected to affect not only agricultural productivity also the water and the nutrient circulation. Therefore this study was aimed to evaluate changes of nitrogen load from rice paddy considering climate change scenario uncertainty. APEX-Paddy model which reflect rice paddy environment by modifying APEX (Agricultural Policy and Environmental eXtender) model was used. Using the AIMS (APCC Integrated Modeling Solution) offered by the APEC Climate Center, bias correction was conducted for 9 GCMs using non-parametric quantile mapping. Bias corrected climate change scenarios were applied to the APEX-Paddy model. The changes and uncertainty in runoff and nitrogen load were evaluated using multi-model ensemble. Paddy runoff showed a change of 23.1% for RCP4.5 scenario and 45.5% for RCP8.5 scenario compared the 2085s (2071 to 2100) against the base period (1976 to 2005). The nitrogen load was found to be increased as 43.9% for RCP4.5 scenario and 76.0% for RCP8.5 scenario. The uncertainty analysis showed that the annual standard deviation of nitrogen loads increased in the future, and the maximum entropy indicated an increasing tendency. And Duncan's analysis showed significant differences among GCMs as the future progressed. The result of this study seems to be used as a basis for mid- and long-term policies for water resources and water system environment considering climate change.

Preparation and Characterization of O-Carboxymethyl Chitosan Ion-complexed Poly(L-Lysine) for Drug and Gene Delivery System (약물 및 유전자 전달체로 응용하기 위한 Poly(L-Lysine)이 결합된 O-Carboxymethyl Chitosan PEG의 제조와 특성)

  • Nam, Joung-Pyo;Kim, Young-Min;Park, Jin-Su;Lee, Eung-Jae;Choi, Chang-Yong;Jang, Mi-Kyeong;Nah, Jae-Woon
    • Applied Chemistry for Engineering
    • /
    • v.21 no.6
    • /
    • pp.643-647
    • /
    • 2010
  • O-carboxymethyl water-soluble chitosan (OCMCh) prepared for enhance the application of chitosan was modified with mthoxy polyethyleneglycol (mPEG) by ion-complex for long circulation in the blood. OCMCh-PEG-PLLs was prepared by forming ion-complex with OCMCh-PEG and Poly(L-Lysine) (PLL) for drug and gene delivery system. The physicochemcal characterisitcs of OCMCh-PEG-PLLs were investigated by FT-IR, $^1H$-NMR. These results showed that CMCh-PEG-PLLs were successfully syntehsized by ion-complex. Particle size distribution and zeta potential of the OCMCh-PEG-PLLs were determined using dynamic light scattering technique. Transmission electron microscopy (TEM) was also used to observe the morphology of the OCMCh-PEG-PLLs. OCMCh-PEG-PLLs have spherical shapes with particle size 290∼390 nm. OCMCh-PEG-PLLs were showed when the feeding amount of mPEG ratio was increased, particle size and zeta potential were decreased. Based on these results, it is possible to introduction of the OCMCh-PEG-PLLs into various biomedical fields such as drug and gene delivery system.

A Study on the Numerical Modeling of the Fish Behavior to the Model Net - Swimming Characteristics of Rainbow Trout, Salmo Gairdnerii in the Water Tank Without Model Net - (모형 그물에 대한 어군행동의 수직 모델링에 관한 연구 - 모형 그물이 없는 수조에서의 무지개송어의 유영특성 -)

  • 이병기
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.1
    • /
    • pp.74-83
    • /
    • 1995
  • To estimate the parameters of a mathematical model of fishes' swimming behavior, the behavior in a experimental water tank was observed and analyzed using the video monitoring system. The tank was equipped with vertical circulation system, and measured $3,500L\;{\times}\;1,500B\;{\times}\;1,000H\;mm$ at flow channel and $1,200L\;{\times}\;900B\;{\times}\;500H\;mm$ at observational part. Rainbow trout, salmo gairdnerii were used as experimental fishes. Their swimming behavior in the tank was observed by the monitoring system, and the positions of every individual were checked at 0.5 second intervals by the image processing of recorded pictures for 5 minutes. The mean swimming speed calculated from the time series data of positions of every individual ranged from 2.5BL cm/sec to 2.9BL cm/sec at the stagnated flow. The mean swimming speed of 10 individuals in a school increased according to the flow speed. The mean swimming depth ranged from 17 cm to 38 cm even though it changed irregularly at the stagnated flow and gradually became stable according to the increase of flow speed. In the present study, the mean distance of individuals from wall of the tank varied from 17.6cm to 21.4cm. The mean distance between the nearest individual varied from 0.4BL cm to 0.7BL cm when 10 individuals in a school were observed. The mean dimension of fish schools became enlarged in all directions according to increase in the number of individuals, and as flow speed increased the horizontal dimension of fish schools expanded while their vertical dimension decreased.

  • PDF

Sediment Transport Characteristics in a Pressure Pipeline (압력 원형관로내 유사이송특성 연구)

  • Son, Kwang Ik;Kim, Hyun Jung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3B
    • /
    • pp.205-209
    • /
    • 2011
  • The low carrying capacity caused by the deposition in a sewer line is one of the main reason of the urban flood. Therefore, an efficient maintenance and management of the storm water drainage system is very important to prevent urban flood. In this research, the sediment transport characteristics through a pressure pipeline were examined with laboratory experiments. Bed-forms in a pipeline, sediment rates, roughness due to sediments were examined. Experimental system consists of flow circulation system with a pump and a sediment feeder at the upstream of the pipeline. Sediments were supplied into a 60 mm-diameter and 8 m-long pipe. Maximum flow rate is $30m^3/hr$, and the sediment feeding rate range is 5 g/s~19 g/s. Governing parameters and estimation equation for sediment transport rate were developed. The mean velocity (U), coefficient of viscosity (${\mu}$), unit width bed load ($q_b$), mean diameter of particle ($d_{50}$), unit weight of sediment in water (${\gamma}^{\prime}_s$) were adopted as the most influencing factors of sediment transport patterns. The prediction equation for sediment transport rate were developed with two dimensionless terms. These two dimensionless terms showed a linear relationship with high correlation coefficient.

Adaptation Capability of Reservoirs Considering Climate Change in the Han River Basin, South Korea (기후변화를 고려한 한강유역 저수지의 적응능력 평가)

  • Chung, Gunhui;Jeon, Myeonho;Kim, Hungsoo;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5B
    • /
    • pp.439-447
    • /
    • 2011
  • It is a main concern for sustainable development in water resources management to evaluate adaptation capability of water resources structures under the future climate conditions. This study introduced the Fuzzy Inference System (FIS) to represent the change of release and storage of reservoirs in the Han River basin corresponding to various inflows. Defining the adaptation capability of reservoirs as the change of maximum and/or minimum of storage corresponding to the change of inflow, the study showed that Gangdong Dam has the worst adaptation capability on the variation of inflow, while Soyanggang Dam has the best capability. This study also constructed an Adaptive Neuro-Fuzzy Inference System (ANFIS) for the more accurate and efficient simulation of the adaptation capability of the Soyanggang Dam. Nine Inflow scenarios were generated using historical data from frequency analysis and synthetic data from two general circulation models with different climate change scenarios. The ANFIS showed significantly different consequences of the release and reservoir storage upon inflow scenarios of Soyanggang Dam, whilst it provides stable reservoir operations despite the variability of rainfall pattern.

Development of Healthcare Bathing System for Improving the Multisensory Functions (복합감각 기능증진 개념의 헬스케어 목욕시스템 개발)

  • Kim, Hyung-Ji;Yu, Mi;Jin, Hea-Ryen;Kwon, Tae-Kyu
    • Science of Emotion and Sensibility
    • /
    • v.13 no.2
    • /
    • pp.309-316
    • /
    • 2010
  • This paper proposes healthcare bathing system for improving the multisensory function and not washing. We designed various types of bathtub for developing bathing system. This system consists of whirlpool bathtub for multisensory stimulation, a cover of bathtub with visual-auditory stimulation function, a small size PC for main control, touch panel, digital multimedia broadcasting (DMB), color-changeable LED mood lighting system for improving visual sensibility and speaker. We investigate the effects on autonomic nervous system during bathing with healthcare bathing system for improving the multisensory functions. To analysis physiological parameter, body temperature, blood pressure, intraocular pressure and heart rate variability (HRV) were measured before, during and after bath using healthcare bathing system. Experiments were performed on partial immersion bath and the water temperature was kept $39{\pm}0.5^{\circ}C$. The body temperature and the heart rate variability of the subject were measured every 5 minutes before, during, and after the bath. In analysis of HRV, the parasympathetic nerve increased from starting bath and decreased after 15 minutes. So the subjects felt comfortable at 15 minutes after starting bath. Blood pressure decreased to 16mmHg maximumly however pulse increased. Bath using healthcare bathing system for improving the multisensory functions affects positively the circulation of the blood. From this results, it leaves something to be desired in evaluation of serviceability and physiological analysis using the healthcare bathing system, however, we expect to analyze more clearly the relationship between the serviceability of product, physiological change and sensibility by various physiological parameters.

  • PDF

Visualization and 3D Numerical Analysis of the Circulation Flow of the Neutron Moderator in a Heavy-Water Nuclear Reactor (가압중수형 원자로의 중성자 감속재 순환 유동가시화와 삼차원 전산해석)

  • Eom, Tae-Kwang;Lee, Jae-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.189-196
    • /
    • 2012
  • The heavy moderator acts as the ultimate heat-sink in an operating CANDU reactor. HUKINS has been developed to investigate moderator flow patterns. HUKINS consists of a 38.4-mm-thick cylindrical shell with a 0.95 m inner diameter and 88 sus-tubes that produce a total heat of 10 kW. A chemical visualization method was selected to estimate the occurrence of typical moderator flow patterns. Momentum-dominated flow, mixed flow, and buoyancy-dominated flow are detected under conditions of a heat load of 7.7 kW and input mass flow rates of 4, 7, and 11 L/min. The experimental results are similar to the results of a CFD simulation that consisted of approximately 1.9 million grids and was conducted using the k-${\varepsilon}$ turbulence model. Therefore, both the present experiments and simulations using HUKINS, a 1/8-scale model, represent all three important flow patterns expected in the real CANDU6 reference reactor. Thus, it has been demonstrated that HUKINS could be useful in the study of CANDU6 moderator circulation.

Effect of Model Resolution on The Flow Structures Near Mesoscale Eddies (수치모델 해상도가 중규모 와동 근처의 난류구조에 미치는 영향)

  • Chang, Yeon S.;Ahn, Kyungmo;Park, Young-Gyu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.2
    • /
    • pp.79-93
    • /
    • 2015
  • Three-dimensional structures of large ocean rings in the Gulf Stream region are investigated using the HYbrid Coordinate Ocean Model (HYCOM). Numerically simulated flow structures around four selected cyclonic and anticyclonic rings are compared with two different horizontal resolutions: $1/12^{\circ}$ and $1/48^{\circ}$. The vertical distributions of Lagrangian Coherent Structures (LCSs) are analyzed using Finite Size Lyapunov Exponent (FSLE) and Okubo-Weiss parameters (OW). Curtain-shaped FSLE ridges are found in all four rings with extensions of surface ridges throughout the water columns, indicating that horizontal stirring is dominant over vertical motions. Near the high-resolution rings, many small-scale flow structures with size O(1~10) km are observed while these features are rarely found near the low-resolution rings. These small-scale structures affect the flow pattern around the rings as flow particles move more randomly in the high-resolution models. The dispersion rates are also affected by these small-scale structures as the relative horizontal dispersion coefficients are larger for the high-resolution models. The absolute vertical dispersion rates are, however, lower for the high-resolution models, because the particles tend to move along inclined eddy orbits when the resolution is low and this increases the magnitude of absolute vertical dispersion. Since relative vertical dispersion can reduce this effect from the orbital trajectories of particles, it gives a more reasonable magnitude range than absolute dispersion, and so is recommended in estimating vertical dispersion rates.

The Environmental and Ecological Meaning of Bibo Landscape in Otgol Village (옻골마을 비보경관의 환경생태적 의미)

  • Jang, Byoung-Kwan;Whang, Bo-Chul
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.36 no.2
    • /
    • pp.32-41
    • /
    • 2008
  • An empirical study and environmental and ecological analysis were conducted on Otgol Village(a village of the Gyeongju Choi's clan in Daegu) where an enclosed pond and groves are still observed. In particular, the enclosed pond and groves and village water system were investigated from an ecological perspective. The enclosed landscape is described based on feng shui principles and the environmental and ecological significance were examined. In general, the environmental and ecological significance is very broad; however, they were analyzed in terms of the quality of life as an empirical study as follows: First, water quality was measured to investigate the improvement of continuous water system functions. In other words, water quality was measured at East Valley(resting space), West Valley(living space), the enclosed pond where the two valleys merge, and the stream that flows out of the pond. Second, the climate functions of the enclosed groves that border the village were examined. In other words, temperature was measured in two places(200m distance from the center of the groves). Third, whether or not a sound ecosystem can be sustained was investigated. In other words, landscape ecological indicators were chosen and measured. The results are as follows: First, the enclosed pond played the role of purifying water quality. While the East Valley has been popular with men for its rock walls and torrents, the West Valley has been popular with women as a living space(ex: doing the laundry). Therefore, the difference of water quality can be explained. Second, since enclosed groves are in a small village forest, they are very weak in terms of being wind proof and temperature reduction effects. Instead, they play the role of the village boundary. Third, the groves are ecologically sound considering the landscape ecological indicators and are similar to ordinary traditional rural villages. In terms of the connection of the green zone, the village groves are well connected to the village boundary wood. If the village groves are restored, in particular, they would offer a decent habitat for grove creatures. According to this study, the traditional village space was formed upon the influence of Feng Shui theories that are based on environmental and ecological principles that focus on the harmony between humans and nature. From the environmental and ecological perspective, the enclosed pond and groves are important factors in building a sustainable village. The diverse water space would help to improve water quality and increase water volume by promoting the water circulation system. In addition, the village woods would surround the village and decrease the temperature and humidity difference between winter and summer. If the groves are small and badly damaged, however, they are meaningful only in dividing the region. The overall improvement of a forestation system and botanical composition may increase the biological diversity and promote the migration of species. Otgol Village has developed an enclosed landscape to improve the village environment. In other words, a sound and refreshing living environment can be developed when the natural ecological system is well understood and properly preserved. Additionally, this traditional village planning will be the environmental and ecological method. From the perspective of environmental ecology, therefore, a traditional village is recommended.