• 제목/요약/키워드: Water chiller

검색결과 120건 처리시간 0.023초

베이즈 분류기를 이용한 수냉식 냉동기의 고장 진단 방법에 관한 실험적 연구 (An Experimental Study on Fault Detection and Diagnosis Method for a Water Chiller Using Bayes Classifier)

  • 이흥주;장영수;강병하
    • 설비공학논문집
    • /
    • 제20권7호
    • /
    • pp.508-516
    • /
    • 2008
  • Fault detection and diagnosis(FDD) system is beneficial in equipment management by providing the operator with tools which can help find out a failure of the system. An experimental study has been performed on fault detection and diagnosis method for a water chiller. Bayes classifier, which is one of classical pattern classifiers, is adopted in deciding whether fault occurred or not. Failure modes in this study include refrigerant leakage, decrease in mass flow rate of the chilled water and cooling water, and sensor error of the cooling water inlet temperature. It is possible to detect and diagnose faults in this study by adopting FDD algorithm using only four parameters(compressor outlet temperature, chilled water inlet temperature, cooling water outlet temperature and compressor power consumption). Refrigerant leakage failure is detected at 20% of refrigerant leakage. When mass flow rate of the chilled and cooling water decrease more than 8% or 12%, FDD algorithm can detect the faults. The deviation of temperature sensor over $0.6^{\circ}C$ can be detected as fault.

터보냉동기를 위한 실용적 모델링과 PI 제어기 설계 (Practical Modeling and PI Controller Design for Centrifugal Water Chillers)

  • 정석권;한성준;정영미
    • 설비공학논문집
    • /
    • 제27권4호
    • /
    • pp.187-194
    • /
    • 2015
  • This paper describes the PI controller design based on a practical transfer function model for centrifugal water chillers. The rotational speed of a compressor and the opening angle of an electronic expansion valve were simultaneously regulated as manipulated variables to maintain temperature reference and to ensure high efficiency of the chiller. The COP according to the change in each variable was investigated by performing some static experiments, and it was reflected in the PI controller design to accomplish the high efficiency control. Especially, the practical transfer function model of the chiller was built based on the dynamic experimental data considering the strong inherent non-linearity and complexity of the chiller system. The validity of the designed PI controller was proven by some experimental results using the test facility and the results were also compared to the conventional evaporating pressure control results.

LiBr/$H_2O$계 흉수기의 흡수촉진에 관한 실험적 연구 (Experimental investigation of enhanced heat and mass transfer toy LiBr/$H_2O$ absorber)

  • 설원실;권오경;윤정인
    • 설비공학논문집
    • /
    • 제10권5호
    • /
    • pp.581-588
    • /
    • 1998
  • An experimental study of the absorption process of water vapor into Lithium Bromide solution was performed. For the purpose of development of high performance absorption chiller-heater utilizing Lithium Bromide solution as working fluid, the absorber is the most effective to improve the performance of an absorber because it requires the largest heat transfer area in an absorption chiller-heater system. This paper introduces bare tube and floral tube for the absorber of absorption chiller-heaters. floral tube has higher heat and mass transfer performance than bare tube conventionally used in absorbers and the it is expected to perform high heat and mass transfer. This paper will provide important information on the selection of absorber tubes in commercial absorption chiller -heaters.

  • PDF

Performance Test of a R134a Centrifugal Water Chiller

  • Jeong, Jin-Hee;Yoon, Pil-Hyun;Kim, Ghil-Yeung;Lee, Hyeon-Koo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제10권2호
    • /
    • pp.97-105
    • /
    • 2002
  • A centrifugal water chiller using alternative refrigerant R134a has been developed. The prototype was designed to have refrigerating capacity of 300RT. Its compressor employs a single high-speed impeller, airfoil diffuser and collector. Newly developed, enhanced tubes were installed in the evaporator and the condenser to reduce the required head for the compressor. Off-design characteristics at various conditions, performance test of the compressor and analysis of the refrigeration cycle were performed. So the probability of use in part load condition was checked and the direction for revision was suggested.

R134a용 터보냉동기의 성능시험 (Performance Test of a R134a Centrifugal Water Chiller)

  • 이현구;윤필현;김춘동;이용덕;정진희
    • 설비공학논문집
    • /
    • 제13권5호
    • /
    • pp.333-340
    • /
    • 2001
  • A centrifugal water chiller using alternative refrigerant R134a have been developed. The prototype was designed to have refrigeration capacity of 300RT. Its compressor employs a single high-speed impeller, airfoil diffuser and collector. Newly developed enhanced tubes were installed in the evaporator and the condenser to reduce the required head for the compressor. Off-design characteristics at various conditions, performance test of the compressor and analysis of the refrigeration cycle were performed. So the probability of use in part load condition was checked and the direction for revision was suggested.

  • PDF

냉수공장에서 열전달을 고려한 응축기와 증발기의 물 압력강하 특성 (Characteristics of the Water Pressure Drop Considering Heat Transfer in the Evaporator and Condenser of a Water Chiller)

  • ;이근식
    • 대한기계학회논문집B
    • /
    • 제35권12호
    • /
    • pp.1293-1300
    • /
    • 2011
  • 물 냉각기의 응축기와 증발기의 형상(길이, 관 직경, 관수, 통로 수)은 설비비용에 관련된 열전달 면적과 운전비용에 관련된 압력강하와의 조화로 결정될 수 있다. 물 냉각기 (냉동사이클)의 쉘-관 형상의 열교환기(응축기와 증발기)의 관 내부로 물이 통과할 때, 주어진 냉각부하와 요구조건을 만족하면서, 물 압력강하가 작은 설계조건에 초점을 맞추었다. 상업용 강화튜브의 사용과 상용 소프트웨어를 사용한 해석결과의 검증으로 실용성과 신뢰성 확보를 도모하였다. 해석결과, 관 통로 수를 적게, 관 직경을 크게, 관 수를 많게 선정하면, 관 길이를 짧게 하므로 물측 압력강하를 줄일 수 있었다. 그러나, 관수가 특정값보다 많을 때는 오히려 작은 관 직경을 사용하는 것이, 내부열저항의 감소로 인한 단위 길이 당 총열저항 감소 때문에, 관 길이를 짧게 하여 설비비용을 줄일 수 있었다.

중온수 흡수식 냉동기의 열전달 면적 최적화 (Optimization of Heat Transfer Area Distribution for a Hot Water Driven Absorption Chiller)

  • 정시영;조광운;이상수
    • 설비공학논문집
    • /
    • 제12권5호
    • /
    • pp.431-438
    • /
    • 2000
  • The major irreversibilities in absorption chillers are associated with the transfer of heat into and out from the machine and irreversible process inside the machine. By modeling only external irreversibilities(endo-reversible), a model was formulated to predict the ideal performance of a single-effect absorption chiller. Its actual performance including both external and internal irreversibilities was calculated with a in-house simulation program. The optimization of heat transfer area distribution was performed for both endo-reversible cycle and actual cycle. The equation of endo-reversible modeling was found to give about 2times higher cooling capacity than the simulation program. At optimal distribution, it was found that heat transfer area of the evaporator was about 30% of total area, that of the generator was 20%, and the rest 50% was for the absorber and condenser. The system COP for endo-reversible cycle was slightly higher than that for actual cycle. In the case of LiBr-water single-effect absorption chiller, the maximum cooling capacity was obtained near the condition that LMTD is same at all heat exchangers.

  • PDF

암모니아-물 흡수식 냉각기의 동적 해석 (Dynamic Analysis of an Ammonia-Water Absorption Chiller)

  • 김병주
    • 설비공학논문집
    • /
    • 제16권10호
    • /
    • pp.990-998
    • /
    • 2004
  • Dynamic behavior of an ammonia-water absorption system was investigated numerically. Thermal-hydraulic model for a single-effect 3 RT chiller was developed by applying transient conservation equations of total mass, $NH_3$ mass, energy and momentum to each component. Transient variations of system properties and transport variables were analysed during start-up operation. Numerical analyses were performed to quantify the effects of bulk concentration and charging ratio on the system performance in terms of cooling capacity, coefficient of performance, and time constant of system. For an absorption chiller considered in the present study, optimum charging ratio and bulk concentration were to found to exist, which resulted in the maximum cooling capacity and COP. The time constant increased as the charging ratio increased, but decreased with the increase of bulk concentration.

Heat Transfer Performance of Plate Type Absorber with Surfactant

  • Yoon, Jung-In;M. M. A. Sarker;Moon, Choon-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권2호
    • /
    • pp.243-251
    • /
    • 2004
  • Absorption chiller/heater can utilize the unused energy of the daily life waste heat, the industry waste heat. the solar energy and the earth energy. These can contribute to energy savings. But the absorption chiller/heater has a demerit that the size of absorption chiller/heater is larger than that of the vapor compression type based on same capacity. In this study. the experimental apparatus of an absorber is manufactured as a plate. which is newly applied in an absorber. The experimental apparatus is composed of a plate type absorber. which can increase the heat exchange area per unit volume and thus facilitating to deeply investigate more detail features instead of that done by the existing type. i.e.. horizontal tube bundle type. The characteristics of heat transfer and refrigeration capacity are studied experimentally. The absorption enhancement by using surfactant is closely examined through the experiment and comparative figures are presented in quantitative and qualitative analysis.

혼합흐름 사이클용 흡수식 냉온수기의 성능특성 (Performance Characteristics on the Mixed Flow Type Absorption Chiller-Heater)

  • 윤정인;신기부;박석호
    • 설비공학논문집
    • /
    • 제8권3호
    • /
    • pp.351-360
    • /
    • 1996
  • This study focuses on the development and evaluation of the high efficiency absorption chiller-heater, which can be applied to a direct gas fired, double effect system with 40RT (508,000kJ) cooling capacity. The performance of the absorption chiller-heater is investigated through cycle simulation and experiment to obtain the system characteristics with the inlet tenperature of cooling, chilled water, and gas input flow rate. The efficiency of the different cycles has been studied and the simulation and experiment results show that higher coefficient of performance could be obtained for mixed flow cycle. The five percent difference was obtained from the comparison between experimental and cycle simulation results. As a result of this study, the optimum designs were determined based on the operating conditions and the coefficient of performance.

  • PDF