• Title/Summary/Keyword: Water channel

Search Result 2,404, Processing Time 0.024 seconds

Late Quaternary Depositional Processes in the Korea Plateau and Ulleung Interplain Gap, East Sea (동해 한국대지 및 울릉 분지간통로의 제4기 후기 해저퇴적작용)

  • 윤석훈;박장준;한상준
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.2
    • /
    • pp.187-198
    • /
    • 2003
  • High-resolution (Chirp, 3-11 kHz) echo facies and sedimentary facies of piston-core sediments were analyzed to reveal the late Quaternary depositional processes in the Korea Plateau and Ulleung Interplain Gap. The Korea Plateau is an Isolated topographic high with a very restricted input of terrigenous sediments, and its slope is characterized by a thin sediment cover and various-scale submarine canyons and valleys. Echo and sedimentary facies suggest that the plateau has been moulded mainly by persistent (hemi) pelagic sedimentation and intermittent settling of volcanic ashes. Sediments on the plateau slope and steep margins of ridges and seamounts were reworked by earthquake-induced, large-scale slope failures accompanied by slides, slumps and debris flows. As major fraction of the reworked sediments consists of (hemi) pelagic clay particles, large amounts of sediments released from mass flows were easily suspended to form turbid nepheloid layers rather than bottom-hugging turbidity currents, which flowed further downslope through the submarine canyons and spreaded over the Ulleung Basin plain. In the Ulleung Interplain Gap, sediments were introduced mainly by (hemi) pelagic settling and subordinate episodic mass flows (turbidity currents and debris flows) along the submarine channels from the slopes of the Oki Bank and Dok Island. The sediments in the Ulleung Interplain Channel and its margin were actively eroded and reworked by the deep water flow from the Japan Basin.

Vegetation Structure in Otter (Lutra lutra) Home Range of Hwacheon, Gangwon-do (강원도 화천군 수달(Lutra lutra) 서식지의 식생 구조)

  • Seo, Hyungsoo;Shin, Youngseob;Lee, Kyungeun;Kim, Yoonmi;Jeon, Mina;Nam, Taek-Woo;Han, Sung-Yong;Choung, Yeonsook
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.spc
    • /
    • pp.66-73
    • /
    • 2014
  • In order to determine whether vegetation would be one of the factors for the selection of otter home range, vegetation structure and other potential factors were studied in Hwacheon, Korea. Thirteen sites, otter's activity found and not found, were investigated in North Han River and connected tributary streams of Hwacheon-gun. Three types of vegetation were classified by cluster analysis, which is short grass, tall grass and shrub type. Vegetation zone of each channel is composed of either one type, or mosaic of tall grass and shrub type. Short grass type is common in Lake Paro and upper North Han-river where water level is highly variable throughout a year. Therefore, annual species such as Persicaria nodosa, Fimbristylis dichotomam and Chenopodium ficifolium are the most dominant. Shrub type is common at the downstream sites of Jichon stream and along mainstream of North Han River down Lake Paro. A shrub species, Salix koreensis, is the most common. Tall grass type is dominant occupying the most vegetation zone of the tributary channels. Phragmites japonica is absolutely dominant. Due to its dense cover, a few plant species are co-existed. Otter activity was found in all three vegetation types and no marked activity was found at some sites of tall grass type. There is no difference in species composition and physiognomy between tall grass sites with and without otter activity, while it shows significant difference in fish availability between two groups. Overall we found that home range of otters in the region is along the mainstream and downstream of tributary streams with high fish availability in all vegetation types and in various human activity levels.

Investigation of Convective Heat Transfer Characteristics of Aqueous SiO2 Nanofluids under Laminar Flow Conditions (층류유동 조건에서 SiO2 나노유체의 대류 열전달 특성에 대한 연구)

  • Park, Hyun-Ah;Park, Ji-Hyun;Jeong, Rag-Gyo;Kang, Seok-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.1-11
    • /
    • 2016
  • The effect of the migration of nanoparticles near the wall of a channel on the convective heat transfer in a laminar flow of $SiO_2$ nanoparticle suspensions (nanofluids) under constant wall heat flux boundary conditions was numerically and experimentally investigated in this study. The dynamic thermal conductivity of the aqueous $SiO_2$ nanofluids was measured using T-type thermocouples attached to the outer surface of a stainless steel circular tube (with a length of 1 m and diameter of 1.75 mm). The nanofluids used in this study were synthesized by dispersing $SiO_2$ spherical nanoparticles with a diameter of 24 nm in de-ionized water (DIW). The enhancement of the thermal conductivity of the nanofluids (e.g., an increase of up to 7.9 %) was demonstrated by comparing the temperature profiles in the flow of the nanofluids with that in the flow of the basefluids (i.e., DIW). However, this trend was not demonstrated in the computational analysis, because the numerical models were based on continuum assumptions and flow features involving nanoparticles in a stable colloidal solution. Thus, to explore the non-continuum effects, such as the modification of the morphology caused by nanoparticle-wall interactions on the heat exchanging surfaces (e.g., the isolated and dispersed precipitation of the nanoparticles), additional experiments were performed using DIW right after the measurements using the nanofluids.

Application of SAR DATA to the Study on the Characteristics of Sedimentary Environments in a Tidal Flat (SAR 자료를 이용한 갯벌 퇴적환경 특성 연구)

  • Kim, Kye-Lim;Ryu, Joo-Hyung;Kim, Sang-Wan;Choi, Jong-Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.5
    • /
    • pp.497-510
    • /
    • 2010
  • In this study, comparisons of the backscattering coefficients and the coherence values which had been extracted from SAR (Synthetic Aperture Radar) images such as JERS-1, ENVISAT and ALOS satellites with surface roughness, surface geometric and soil moisture content were carried out. As the results of analysis using the backscattering coefficient and coherence values from SAR images, the coherence was shown high in the region containing more of mud fraction due to higher viscosity of fine grain-size. A lot of tidal channels were well developed in the Ganghwa tidal flat, affecting the drainage of seawater and subsequent soil moisture content by exposure time of tidal flat. The backscattering coefficient. consequently, appeared to be lower in sand flat and mix flat with decrease of soil moisture. In contrast, most mud flats were distributed at high elevation so that soil moisture was not much influenced by seawater. The backscattering coefficient in mud flat seemed to have a relationship with the density of tidal channel. In addition, lowering backscattering coefficients in the all Ganghwa tidal flat was observed when surface remnant water increased according to the amount of rainfall. The correlation between backscattering coefficient, coherence and sediment environment factors in the Ganghwa tidal flat was investigated. In the future, more quantitative spatial analysis will be helpful to well understand the sedimentary influence of various sediment environment factors.

Sensitivity Analysis of IR Aerosol Detection Algorithm (적외선 채널을 이용한 에어로솔 탐지의 경계값 및 민감도 분석)

  • Ha, Jong-Sung;Lee, Hyun-Jin;Kim, Jae-Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.507-518
    • /
    • 2006
  • The radiation at $11{\mu}m$ absorbed more than at $12{\mu}m$ when aerosols is loaded in the atmosphere, whereas it will be the other way around when cloud is present. The difference of the two channels provides an opportunity to detect aerosols such as Yellow Sand even with the presence of clouds and at night. However problems associated with this approach arise because the difference can be affected by various atmospheric and surface conditions. In this paper, we has analyzed how the threshold and sensitivity of the brightness temperature difference between two channel (BTD) vary with respect to the conditions in detail. The important finding is that the threshold value for the BTD distinguishing between aerosols and cloud is $0.8^{\circ}K$ with the US standard atmosphere, which is greater than the typical value of $0^{\circ}K$. The threshold and sensitivity studies for the BTD show that solar zenith angle, aerosols altitude, surface reflectivity, and atmospheric temperature profile marginally affect the BTD. However, satellite zenith angle, surface temperature along with emissivity, and vertical profile of water vapor are strongly influencing on the BTD, which is as much as of about 50%. These results strongly suggest that the aerosol retrieval with the BTD method must be cautious and the outcomes must be carefully calibrated with respect to the sources of the error.

A study on the relationship between Schmidt Hammer's 'R' and bedrock microforms (기반암 하상 미지형과 슈미트 해머 반발 값과의 관계에 대한 연구)

  • KIM, Jong Yeon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.3
    • /
    • pp.51-69
    • /
    • 2012
  • Physical strength of the rock is the most important factor of resistance to erosion and has been measured through various way. Bedrock microforms, like potholes and grooves, are the forms sculpted by the erosional processes of flow and the location and morphology are strongly affected by the differential erosion. It also assumed that the physical strength of the rock controls the erosion rate and mode of erosion. The schmidt hammer has been used to measure the rock strength in the field for the geomorphological research. To find the relationship between the rock strength and microforms, Schmidt hammer's R(rebound) were measured in the Baeksuktan, middle reach of Gilancheon, Cheongsong, Gyungsangbuk do. The overall values of rebound of the local sandstone showed over 65 in most cases, so it can be regarded as 'very strong'. It is found that the rebound values of the rock surface decreased towards current water level. It also, however, found that there was no systematic differences in rebound values among the topographically high and lows in the bedrock surface. There was no statistically significant difference in rebound values of the area with well developed microforms and others. The values of R from the exposed faces and inside of the microforms are similar. In the case of conglomerate, the part with the gravel showed higher values that the parts with sands. The rebound values are decreased near of(<1cm) the geological discontinuities(including joint and faults), so this line of weakness could be the point of initiation of active erosion to form microforms. However there is large variations in rebound values within this part. It also should be mentioned that topological relation between the strike of the geologic discontinuities and flow direction looks control the mode of erosional processes.

Analysis of Streamflow Characteristics of Boryeong-dam Watershed using Global Optimization Technique by Infiltraion Methods of CAT (CAT 모형의 침투해석방법별 전역최적화기법을 이용한 보령댐 유역의 유출 특성 변화 분석)

  • Park, Sanghyun;Kim, Hyeonjun;Jang, Cheolhee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.412-424
    • /
    • 2019
  • In this study, the changes of the streamflow characteristics of the watershed were analysed depending on the infiltration methods of CAT. The study area, Boryeong-dam watershed located in Chungcheongnam-do area, has been suffered from severe drought in recent years and stabilized regarding on the storage rate through efforts such as constructing a channel connecting the upstream of Boryeong-dam from the downstream of the Geum river. In this study, the effects of soil infiltration parameters on the watershed streamflow characteristics were analyzed by the infiltration methods of CAT such as Rainfall Excess, Green&Ampt and Horton. And the parameter calibrations were conducted by SCEUA-P, a global optimization technique module of the PEST, the package for parameter optimization and uncertainty analysis, to compare the yearly variations of soil parameters for infiltration methods of CAT. In addition, the streamflow characteristics were analyzed for three infiltration methods by applying three different scenarios, such as applying calibrated parameters for every years to simulate the model for each years, applying calibrated parameters for the entire period to simulate the model for entire period, and applying the average value of yearly calibrated parameters to simulate the model for entire period.

Discharge Computation from Float Measurement in Vegetated Stream (부자 측정 시 식생을 고려한 유량산정에 관한 연구)

  • Lee, Tae Hee;Jung, Sung Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.307-316
    • /
    • 2019
  • Development of vegetation in stream channel increases resistance to flow, resulting in increase in river stage upon flood and affecting change in stage-discharge relationship. Vegetation revealed in stream by water level reaching a peak and then declined upon flood is mostly found as prone. Taking an account of flow distribution with the number of vegetation, prone vegetation layer might be at height where discharge rate is zero (0) (Stephan and Guthnecht, 2002). However, there is a tendency that flow rate is overestimated when applying the height of river bed to flow area with no consideration of the height of vegetation layer in flow rate by float measurement. In this study, reliable flow measurement in stream with vegetation was calculated by measuring the height of vegetation layer after flood and excluding the vegetation layer-projected area from the flow area. The result showed the minimum 4.34 % to maximum 10.82 % of flow deviation depending on the scale of discharge. Accordingly, reliable velocity-area methods would be determined if vegetation layer-projected area in stream is considered in flow rate estimation using the flow area during the flood.

Development of Digital Streamer System for Ultra-high-resolution Seismic Survey (초고해상 탄성파 탐사를 위한 디지털 스트리머 시스템 개발)

  • Shin, Jungkyun;Ha, Jiho;Yoon, Seongwoong;Im, Taesung;Im, Gwansung
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.3
    • /
    • pp.129-139
    • /
    • 2022
  • Analog-based streamers for ultra-high-resolution seismic surveys are capable of additional noise ingress in water, but the specifications cannot be expanded through interconnections. Foreign-produced digital streamers have been introduced and used primarily at domestic research institutes; however, the cost is high and smooth maintenance is challenging. This study investigates the localization of ultra-high-resolution digital streamers capable of high-resolution imaging of a geological structure. A digital streamer capable of 24-bit, 10 kHz digital sampling of up to 64 channel data was developed through research and development. Various quantitative specifications of the system were designed and developed close to the benchmark model, Geometrics' GeoEel streamer, and the number of modules that make up the system was drastically reduced, reducing development costs and making it easier to use. The field applicability of the developed streamer system was evaluated in an in situ experiment conducted in the waters around the Port of Yeong-il Bay in Pohang in April 2022.

Measurements of Void Concentration Parameters in the Drift-Flux Model (상대유량 모델내의 기포분포계수 측정에 관한 연구)

  • Yun, B.J.;Park, G.C.;Chung, C.H.
    • Nuclear Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.91-101
    • /
    • 1993
  • To predict accurately the thermal hydraulic behavior of light water reactors during normal or abnormal operation, the accurate estimation of the void distribution is required. Up to date, many techniques for predicting void fraction of two-phase flow systems have been suggested. Among these techniques, the drift-flux model is widely used because of its exact calculation ability and simplicity. However, to get more accurate prediction of void fraction using drift-flux model, slip and flow regime effects must be considered more properly In the drift-flux method, these two effects are accounted for by two drift-flux parameters ; $C_{o}$ and (equation omitted). At earlier stage, $C_{o}$ is measured in a circular tube. In this study, $C_{o}$ is experimentally determined by measuring local void fraction and vapor velocity distribution in a rectangular subchannel having 4 heating rods which simulates nuclear subchannels. The measurements are peformed with two-electrical conductivity probes which are known to be adequate for measuring local parameters. The experiments are performed at low flow rate and the system pressure less than 3 atmo spheric pressure. In this experiment, (equation omitted), is not measured, but quoted from well-known empirical correlation to formulate $C_{o}$. Finally, $C_{o}$ is expressed as a function of channel averaged void fraction. fraction.

  • PDF