• Title/Summary/Keyword: Water bloom

Search Result 439, Processing Time 0.025 seconds

A study on the characteristics of cyanobacteria in the mainstream of Nakdong river using decision trees (의사결정나무를 이용한 낙동강 본류 구간의 남조류 발생특성 연구)

  • Jung, Woo Suk;Jo, Bu Geon;Kim, Young Do;Kim, Sung Eun
    • Journal of Wetlands Research
    • /
    • v.21 no.4
    • /
    • pp.312-320
    • /
    • 2019
  • The occurrence of cyanobacteria causes problems such as oxygen depletion and increase of organic matter in the water body due to mass prosperity and death. Each year, Algae bloom warning System is issued due to the effects of summer heat and drought. It is necessary to quantitatively characterize the occurrence of cyanobacteria for proactive green algae management in the main Nakdong river. In this study, we analyzed the major influencing factors on cyanobacteria bloom using visualization and correlation analysis. A decision tree, a machine learning method, was used to quantitatively analyze the conditions of cyanobacteria according to the influence factors. In all the weirs, meteorological factors, temperature and SPI drought index, were significantly correlated with cyanobacterial cell number. Increasing the number of days of heat wave and drought block the mixing of water in the water body and the stratification phenomenon to promote the development of cyanobacteria. In the long term, it is necessary to proactively manage cyanobacteria considering the meteorological impacts.

Short-term Variations of Mesozooplankton Related to the Environmental Factors in Gamak Bay during Summer, 2006 (2006년 하계 가막만의 환경요인 변동에 따른 중형동물플랑크톤 군집의 단기 변동)

  • Moon, Seong-Yong;Oh, Hyun-Ju;Kim, Sook-Yang
    • Journal of Environmental Science International
    • /
    • v.18 no.1
    • /
    • pp.21-32
    • /
    • 2009
  • The short-term variations of the mesozooplankton community structure were investigated in Gamak Bay during summer season, 2006. The study was based on a comprehensive survey constituting from 12 stations on June 19, July 28, August 4, and August 29, respectively. Mean of temperature and chlorophyll ${\alpha}$ concentrations in the surface layer were significantly higher than those in bottom layer, and those concentrations were significantly higher in the inner bay than those in the outer bay. A total of 40 taxa including 19 copepods were observed in Gamak Bay during summer season. Mean abundance of total mesozooplankton varied from 1,859 to 26,111 indiv. $m^{-3}$. The dominant species were Noctiluca scintillans, Penilia avirostris, Evadne tergestina, Paracalanus parvus s. 1., Acartia omorii and Cirriped nauplii and cyprii in Gamak Bay, and they contributed 90% of mean abundance of total mesozooplankton. Noctiluca scintillans was high after the rainfall. Cluster analysis showed that the mesozooplankton community could be divided into 4 distinct groups, indicating rapid change of the community in the short-term of this survey. The relative contribution of each group of the N. scintillans, P. avirostris, E. tergestina, and P. parvus s. 1. showed differences during the phytoplankton bloom period. The mesozooplankton community compositions were highly associated with water temperature, and salinity in physical conditions, and food organisms affect short-term variations in mesozooplankton composition. Interestingly, protozoa N. scintillans, and Cladocera appeared to be one of the key organisms to extinguish the phytoplankton bloom. Therefore, this study suggests that N. scintillans, and Cladocera could be a key player to control the mesozooplankton community structure during summer season, 2006.

Seasonal Dynamics of Phytoplankton and Environmental Factors around the Chagwi-do off the West Coast of Jeju Island, Korea

  • Affan, Abu;Lee, Joon-Baek;Kim, Jun-Teck;Choi, Young-Chan;Kim, Jong-Man;Myoung, Jung-Goo
    • Ocean Science Journal
    • /
    • v.42 no.2
    • /
    • pp.117-127
    • /
    • 2007
  • The dynamics of phytoplankton abundance with seasonal variation in physicochemical conditions were investigated monthly at 10 stations around the Chagwi-do off the west coast of Jeju Island, Korea, including inshore, middle shore, and offshore in the marine ranching are a from September 2004 to November 2005. Water temperature varied from 12.1 to $28.9^{\circ}C$ (average $18.8^{\circ}C$), and salinity from 28.9 to 34.9 psu (average 33.7 psu). The chlorophyll a concentration was $0.02-2.05\;{\mu}g\;L^{-1}$ (average $0.70\;{\mu}g\;L^{-1}$), and the maximum concentration occurred in the bottom layer in April. A total of 294 phytoplankton species belonging to 10 families was identified: 182 Bacillariophyceae, 52 Dinophyceae, 9 Chlorophyceae, 12 Cryptophyceae, 6 Chrysophyceae, 4 Dictyophyceae, 13 Euglenophyceae, 6 Prymnesiophyceae, 5 Prasinophyceae, and 5 Raphidophyceae. The standing crop was $2.21-48.69\times10^4\;cells\;L^{-1}$ (average $9.23\times10^4\;cells\;L^{-1}$), and the maximum occurred in the bottom layer in April. Diatoms were most abundant throughout the year, followed by dinoflagellates and phytoflagellates. A phytoplankton bloom occurred twice: once in spring, peaking in April, and once in autumn, peaking in November. The spring bloom was represented by four Chaetoceros species and Skeletonema costatum; each contributed 10-20% of the total phytoplankton abundance. The autumn bloom comprised dinoflagellates, diatoms, and phytoflagellates, of which dinoflagellates were predominant. Gymnodinium conicum, Prorocentrum micans, and P. triestinum each contributed over 10% of the total phytoplankton abundance.

Effect of Chemical Drying Agents on the Field Drying Rate of Alfalfa and Rye Hay (Alfalfa와 호밀에 있어서 속성 건초조제를 위한 건조제 처리효과)

  • Seo, Sung;Kim, Jong-Geun;Chung, Eui-Soo;Kang, Woo-Sung;Yang, Jong-Sung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.18 no.2
    • /
    • pp.89-94
    • /
    • 1998
  • A field experiment was carried out to determine the effects of chemical drying agents at mowing on the field drying rate of alfalfa (cv. Vernal) and rye (cv. Koolgrazer) for hastening hay manuf8cture. In alfalfa; chemicals ($K_2CO_3$ 2% $K_2CO_3$ 3% $Na_2CO_3$ 2% $CaCO_3$, 2% $K_2CO_3$2% + $Na_2CO_3$, 1% only water spray and control) were treated at early bloom stage in 1995. Chemicals ($K_2CO_3$, 2%, $Na_2CO_3$, 2% $CaCO_3$, 2% and control) were applicated at different harvest stages (early heading, heading and bloom) in rye, 1996. The drying rate of alfalfa by $K_2CO_3$ treatment among chemicals was higher than control, and the duration of field dry was shortened by one day with $K_2CO_3$ application, but there was no difference in drying efficiency between $K_2CO_3$ 2% and $K_2CO_3$ 3%. In rye, however, no moisture reduction by chemicals was observed. The days required for field dry were 6, 4, and 3 days at warly heading heading and bloom stage respectively; regardless of chemical drying agents and conbol. The nutritive value of rye hay with chemicals at baling was very slightly higher than control, but there was no significant difference. Also, no difference of hay quality was found among drying agents. In conclusion, $K_2CO_3$can enhance the field drying rate of alfalfa hay, but the drying efficiency was not high, particularly in rye hay. Harvesting at early heading to heading stage was desirable for manufacture of high quality rye hay.

  • PDF

Analysis of Water Quality Variation by Lowering of Water Level in Gangjeong-Goryong Weirin Nakdong River (낙동강 강정고령보 수위저하 운영에 따른 수질 변동특성 분석)

  • Park, Dae-Yeon;Park, Hyung-Seok;Kim, Sung-Jin;Chung, Se-Woong
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.3
    • /
    • pp.245-262
    • /
    • 2019
  • The objectives of this study were to construct a three-dimensional water quality model (EFDC) for the river reach between Chilgok Weir and Gangjeong-Goryong Weir (GGW) located in Nakdong River, and evaluate the effect of hydraulic changes, such as water level and flow velocity, on the control of water quality and algae biomass. After calibration, the model accurately simulated the temporal changes of the upper and lower water temperatures that collected every 10 minutes, and appropriately reproduced changes in organic matter, nitrogen, phosphorus, and cyanobacteria. However, the simulated values were overestimated for the diatoms and green algae cell density, possibly due to the uncertainties of the parameters associated with algae metabolism and the lack of zooplankton predation function in the simulations. As a result of scenario simulation of running the water level of GGW from EL. 19.44 m to EL. 14.90 m (4.54 m drop), Chl-a and algae cell density decreased significantly.In particular,the cyanobacteria on the surface layer, which causes algal bloom, declined by 56.1% in the low water level scenario compared to the existing management level. The results of this study are in agreement with the previous studies that maintenance of critical flow velocity is effective for controlling cyanobacteria, and imply that hydraulic control such as decrease of water level and residence time in GGW is an alternative to limit the overgrowth of algae.

Method for Simultaneous Determination of Cyanotoxins in Water by LC-MS/MS (액체크로마토그래프/질량분석기를 이용한 수중 남조독소물질 동시분석법)

  • Kim, Jeong-Hee;Yun, Mi-Ae;Kim, Hak-Chul
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.4
    • /
    • pp.597-605
    • /
    • 2009
  • Algae bloom occurred in reservoir in summer can cause taste and odor in water and disturb the flocculation and sedimentation processes in water treatment plant and cause sand filter plugging. It was also reported that microcystins, anatoxin and saxitoxin released from cyanobacteria had acute toxic effects on liver and nervous system. For these reasons, many advanced countries inclusive of WHO set the guideline for these toxins and cyanotoxins have been managed with regular monitoring in Korea as well. However, complex sample preparation steps such as a solid phase extraction (SPE) and derivatization are required with an existing analysis method with HPLC. We needed to improve an analysis method for low extraction efficiency and long sample preparation time. In this study, we have established a new LC/MS/MS method which can simultaneously determine 6 cyanotoxins (Microcystins-LR, Microcystins-RR, Microcystins-YR, Anatoxin-a, Saxitoxin, Neosaxitoxin) with only simple filtration step. When $75{\mu}L$ filterated sample was injected onto the LC-MS/MS, the recovery ranged from 86% to 112% and the MDL was $0.025{\sim}0.581{\mu}g/L$. We can make the MDL be lower than the guideline ($1{\sim}3{\mu}g/L$) of advanced countries with simple preparation.

The Impact on Water Quality from Blue-Green Algae Microcystis Natural Phytoplankton by Algal Assay (생물검정에 의한 남조류 Microcystis가 수질에 미치는 영향)

  • Shin, Jae-Ki;Cho, Kyung-Ja
    • Journal of Environmental Science International
    • /
    • v.9 no.3
    • /
    • pp.267-273
    • /
    • 2000
  • In order to understand the impact for decomposition of blue-green algae Microcystis on water quality, the algae were cultivated with collection of natural population during approximately one month, when water-bloom of Microcystis dominated at August 31, 1999 in the lower part of the Okchon Stream. The enrichment of inorganic NㆍP nutrients didn't in algal assay and the effect of Microcystis on water duality was assessed from the variation of nutrients by algal senescence. Microcystis population seemed to play a temporary role of sink for nutrients in the water body. Initial algal density of Microcystis was 2.3×10/sup 6/ cells/㎖. When Microcystis population died out under light condition, algal NㆍP nutrients between 9∼12 days affected to increase of biomass after reuse by other algal growth as soon as release to the ambient water. However, cellular nutrients under dark condition were almost moved into the water during algal cultivation. NH₄, NO₃ and SRP concentration were highly increased with 160, 17 and 79 folds, respectively relative to the early. As a result, the senescence of Microcystis population seemed to be an important biological factor in which cause more eutrophy and increase of explosive algal development by a lot of nutrients transfer to water body. There are significantly observed an effort of reduce for production of inner organic matters such a phytoplankton as well as load pollutants from watershed in side of the water quality management of reservoir.

  • PDF

Design of In-situ Self-diagnosable Smart Controller for Integrated Algae Monitoring System

  • Lee, Sung Hwa;Mariappan, Vinayagam;Won, Dong Chan;Shin, Jaekwon;Yang, Seungyoun
    • International Journal of Advanced Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.64-69
    • /
    • 2017
  • The rapid growth of algae occurs can induce the algae bloom when nutrients are supplied from anthropogenic sources such as fertilizer, animal waste or sewage in runoff the water currents or upwelling naturally. The algae blooms creates the human health problem in the environment as well as in the water resource managers including hypoxic dead zones and harmful toxins and pose challenges to water treatment systems. The algal blooms in the source water in water treatment systems affects the drinking water taste & odor while clogging or damaging filtration systems and putting a strain on the systems designed to remove algal toxins from the source water. This paper propose the emerging In-Situ self-diagnosable smart algae sensing device with wireless connectivity for smart remote monitoring and control. In this research, we developed the In-Site Algae diagnosable sensing device with wireless sensor network (WSN) connectivity with Optical Biological Sensor and environmental sensor to monitor the water treatment systems. The proposed system emulated in real-time on the water treatment plant and functional evaluation parameters are presented as part of the conceptual proof to the proposed research.

Field Study of Water Quality Improvement by Circulation, Sonication and Ozonation (수류확산과 초음파와 오존을 이용한 현장 수질 개선 평가)

  • Tekile, Andinet;Kim, Ilho;Lee, Jai-Yeop
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.2
    • /
    • pp.170-180
    • /
    • 2017
  • The study used jet water flow, ultra-sonication and ozonation system units to investigate impact of the unit components on water quality of stagnant Yeo-cheon River reach, Korea. Samples were collected at six locations, before operation and after 1, 3 and 6 hrs of operation. By operating the water flow unit only, dissolved oxygen increased as high as 90% after 3 hr at 25 m downstream of the device and Chl-a was reduced by 80%. Incorporating sonication, greater than 80% of Chl-a was removed even at 100 m distance from the device. Besides, total dissolved phosphorus was reduced from an average value of $420({\pm}70){\mu}g/L$ before ultrasonic irradiation to $160({\pm}40){\mu}g/L$ after the treatment. Releasing ozone into the flow with sonication, Chl-a was considerably removed from the water column and ammonia nitrogen was also decreased to average value of $20{\mu}g/L$ from $60{\mu}g/L$. However, as only $3{\ast}10^{-3}mg/L$ of ozone was used for safety purpose and due to brief reaction time it takes, effect of integrating ozone to the system covered limited area. Generally, combining sonication to jet flow is promising in preventing algal bloom formation since it has effectively removed Chl-a from the water column.

Potential in the Application for Biological Control of Harmful Algal Bloom Cased by Microcystis aeruginosa (유해성 조류 Microcystis aeruginosa의 생물학적 제어를 위한 미소생물제재의 적용 실험)

  • Kim, Baik-Ho;Choi, Hee-Jin;Han, Myung-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.1 s.106
    • /
    • pp.64-69
    • /
    • 2004
  • Growth inhibition of Microcystis aeruginosa was examined with single-or mixed treatment of algicidal bacterium Streptomyces neyagawensis and heterotrich ciliate Stentor roeseli, which isolated from natural freshwater. The harmful Cyanobac-terium, Microcystis aeruginosa density was effectively suppressed by the algicidal bacterium Streptomyces neyagawensis, and the bacterial biomass was few changed. The heterotrich ciliate S, roegeji isolated from the eutrophic Pal'tang riverine, Korea suppressed the algal biomass effectively. But mixed-treatment of both bio-agents was less effective, leading to an increase in algal density.