• Title/Summary/Keyword: Water blocking effect

Search Result 107, Processing Time 0.025 seconds

Efficiency of TLDs with bottom-mounted baffles in suppression of structural responses when subjected to harmonic excitations

  • Shad, Hossein;Adnan, Azlan;Behbahani, Hamid Pesaran;Vafaei, Mohammadreza
    • Structural Engineering and Mechanics
    • /
    • v.60 no.1
    • /
    • pp.131-148
    • /
    • 2016
  • Tuned Liquid Dampers (TLDs) provide low damping when it comes to deep water condition, and that not all water depth is mobilized in energy dissipation. This research focussed on a method to improve the efficiency of TLDs with deep water condition. Several bottom-mounted baffles were installed inside a TLD and the dynamic characteristics of modified TLDs together with their effect on the vibration control of a SDOF structure were studied experimentally. A series of free vibration and harmonic forced vibration tests were carried out. The controlling parameter in the conducted tests was the Vertical Blocking Ratio (VBR) of baffles. Results indicated that increase in VBR decreases the natural frequency of TLD and increases its damping ratio. It was found that the VBR range of 10% to 30% reduced response of the structure significantly. The modified TLD with the VBR of 30% showed the best performance when reduction in structural responses under harmonic excitations were compared.

Optophysical Properties of Hydrogel Ophthalmic Lenses Containing Gallate Group (Gallate group이 포함된 친수성 안의료용 렌즈의 광물리적 특성)

  • Park, Se-Young;Sung, A-Young
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.6
    • /
    • pp.725-730
    • /
    • 2012
  • HEMA (2-hydroxyethyl methacrylate), EGDMA (ethylene glycol dimethacrylate; cross-linker), MMA (methyl methacrylate) and AA (acrylic acid) were copolymerized with ethyl gallate and propyl gallate as additives in the presence of AIBN (2,2'-azobisisobutyronitrile; initiator). The measurement of physical properties of the produced copolymers exhibited that refractive index, water content, visible transmittance, tensile strength, and contact angle were in the range of 1.433-1.435, 38.71-38.99%, 85.4-88.8%, 0.2468-0.2740 kgf and $49.77-36.29^{\circ}$, respectively. The transmittances of the copolymers were measured to be in the range of 49.0-7.4% and 71.0-43.4% for UV-B and UV-A, respectively, indicating that the copolymers have UV-blocking effect. The produced copolymers containing ethyl gallate and propyl gallate satisfied the basic physical properties required for the fabrication of hydrogel contact lenses. The copolymers showed an increase of wettability and UV-blocking effects while having no significant change in water content compared to the gallate-free copolymers.

Surface Hydrophilization of PVDF Membrane by Thermal Polymerization Lamination Process (열중합 Lamination 공정에 의한 PVDF 분리막의 표면 친수화)

  • Lee, Se-Min;Byun, Young-Jin;Kim, Jin-Ho;Kim, Sung Soo
    • Membrane Journal
    • /
    • v.23 no.3
    • /
    • pp.220-225
    • /
    • 2013
  • Hydrophilic monomers were polymerized for lamination on polyvinylidene fluoride (PVDF) membrane surface for hydrophilization of the membranes. Hydrophilization reduced the contact angle from $95^{\circ}$ to $55^{\circ}$ and enhanced the water flux by 10 times while it reduced the bovine serum albumin (BSA) adsorption amount to 1/4 level. Thermal polymerization process was optimized by examining several operation parameters. Dimethyl oxobuthyl acrylamide (DOAA) showed the best effect due to its better hydrophilicity than others. Increase of amount of monomer enhanced the performance until the optimum concentration of 30 wt%, beyond which excess amount of monomer resulted in homopolymerization to deteriorate the performance. Azobis (isobutyronitrile)(AIBN) initiator has greater activation temperature range than benzoyl peroxide (BPO) and it showed better hydrophilation performance. Two stage lamination process, application of initiator followed by monomer addition, was more effective than one stage process, addition of initiator and monomer at once, which still reduced the contact angle but also reduced the water flux by pore blocking phenomena.

Effects of Sujeom-san Water Extract in Cultured Rat Myocardial Cells (수념산 전탕액이 배양 심근세포에 미치는 영향)

  • Jean Young Seok;Kwon Kang Beam;Park Eun Young;Soong Eun Kyung;Park Seung Taeck;Ryu Do Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.2
    • /
    • pp.353-358
    • /
    • 2002
  • To test the protective effect of herbal medicine against oxygen free radical-induced myocardiotoxicity, cytotoxicity of xanthine oxidase/hypoxanthine (XO/HX) was examined using MTT, TBARS, and beating rate assay in the presence of water extract of Sujeom-san(SJS) or single consituents of its prescription. Myocardial toxicity was evaluated in neonatal rat myocardiocytes in cultures. In the present paper, XO/HX resulted in a decrease in viability and beating rate and increases in lipid peroxidation in cultured myocardial cells. In the effect of SJS water extract, it showed effects from the cardiocytotoxicity induced by XO/HX treatment such as increases in beating rate and decreases in lipid peroxidation. In the effect of Rhizoma Corydalis (RC), Faeces Trogopterori (FT), Fructus Amomi Tsaoko (FAT) and Myrrha on the cardiocytotoxicity, they were significantly effective in blocking the XO/HX-induced cardiocytotoxicity by increase of beating rate in FAT and FT group as well as decrease of lipid peroxidation in FT and RC group. These results show that oxygen free radical elicits toxic effects in cultured myocardial cells derived from neonatal rat, and suggest that water extract of Sujeomsan, Rhizoma Corydalis, Faeces Trogopterori, Fructus Amomi Tsaoko or Myrrha is very effective in the prevention of xanthine oxidase/hypoxanthine- induced cardiotoxicity.

Effect of growth phase of cyanobacterium on release of intracellular geosmin from cells during microfiltration process

  • Matsushita, Taku;Nakamura, Keisuke;Matsui, Yoshihiko;Shirasaki, Nobutaka
    • Membrane and Water Treatment
    • /
    • v.6 no.3
    • /
    • pp.225-235
    • /
    • 2015
  • During low-pressure membrane treatments of cyanobacterial cells, including microfiltration (MF) and ultrafiltration (UF), there have reportedly been releases of intracellular compounds including cyanotoxins and compounds with an earthy-musty odor into the water, probably owing to cyanobacterial cell breakage retained on the membrane. However, to our knowledge, no information was reported regarding the effect of growth phase of cyanobacterial cells on the release of the intracellular compounds. In the present study, we used a geosmin-producing cyanobacterium, Anabaena smithii, to investigate the effect of the growth phase of the cyanobacterium on the release of intracellular geosmin during laboratory-scale MF experiments with the cells in either the logarithmic growth or stationary phase. Separate detection of damaged and intact cells revealed that the extent of cell breakage on the MF membrane was almost the same for logarithmic growth and stationary phase cells. However, whereas the geosmin concentration in the MF permeate increased after 3 h of filtration with cells in the logarithmic growth phase, it did not increase during filtration with cells in the stationary phase: the trend in the geosmin concentration in the MF permeate with time was much different between the logarithmic growth and stationary phases. Adsorption of geosmin to algogenic organic matter (AOM) retained on the MF membrane and/or pore blocking with the AOM were greater when the cells were in the stationary phase versus the logarithmic growth phase, the result being a decrease in the apparent release of intracellular geosmin from the stationary phase cells. In actual drinking water treatment plants employing membrane processes, more attention should be paid to the cyanobacterial cells in logarithmic growth phase than in stationary phase from a viewpoint of preventing the leakage of intracellular earthy-musty odor compounds to finished water.

Analysis the Effects of Physical Blocking Weirs on the Water Quality in Daechung Reservoir (물리적 차단시설이 대청호 수질에 미치는 효과 분석)

  • Lee, Heungsoo;Chung, Sewoong;Park, Hyungseok;Jeong, Donghwan
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.1
    • /
    • pp.25-39
    • /
    • 2012
  • This study was aimed to assess the effects of additional installation of two different types of weirs, one is a curtain-type weir and another is a submerged-type weir, on the control of algal growth in Daechung Reservoir. A two-dimensional(2D) coupled hydrodynamic and eutrophication model that can accommodate vertical movement of the curtain weir following the water surface variations was verified using field data obtained in two distinctive hydrological years; dry(2008) and wet(2010). The model adequately simulated the temporal and spatial variations of water temperature, nutrients and algal(Chl-a) concentrations during the periods. The effectiveness of curtain weir on the control of algal bloom was evaluated by applying the model to 2001(dry year) and 2010 assuming 6 different scenarios according to installation locations. The curtain weirs that already installed at 3, 5, 7 sites(scenario C-2) showed significant effect on the control of algal growth in the reservoir; the reduction rates of algal concentration were placed in the range of 7.5~31.5% and 9.1~44.9% for 2001 and 2010, respectively. However the simulation results revealed that additional installation of curtain weirs(scenario C-3~C-6) in the bay area (choosori) have marginal effect. The effectiveness of submerged weir was evaluated against 2010 assuming 7 different scenarios according to installation locations, but all scenarios(S-1~S-7) showed neglectable or negative effect on the control of algal growth.

Water Extract of Ash Tree (Fraxinus rhynchophylla) Leaves Protects against Paracetamol-Induced Oxidative Damages in Mice

  • Jeon, Jeong-Ryae
    • Food Science and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.612-616
    • /
    • 2006
  • The protective effect of water extract of ash tree leaves (ALE) against oxidative damages was investigated in paracetamol-induced BALB/c mice. Biochemical analysis of anti-oxidative enzymes, immunoblot analyses of hepatic cytochrome P450 2El (CYP2E1), and the gene expression of tumor necrosis factor (TNF-${\alpha}$) were examined to determine the extract's protective effect and its possible mechanisms. BALB/c mice were divided into three groups: normal, paracetamol-administered, and ALE-pretreated groups. A single dose of paracetamol led to a marked increase in lipid peroxidation as measured by malondialdehyde (MDA). This was associated with a significant reduction in the hepatic antioxidant system, e.g., glutathione (GSH). Paracetamol administration also significantly elevated the expression of CYP2E1, according to immunoblot analysis, and of TNF-${\alpha}$ mRNA in liver. However, ALE pretreatment prior to the administration of paracetamol significantly decreased hepatic MDA levels. ALE restored hepatic glutathione and catalase levels and suppressed the expression of CYP2E1 and TNF-${\alpha}$ observed in inflammatory tissues. Moreover, ALE restored mitochondrial ATP content depleted by the drug administration. These results show that the extract of ash tree leaves protects against paracetamol-induced oxidative damages by blocking oxidative stress and CYP2E1-mediated paracetamol bioactivation.

Ridge and field tile aerodynamics for a low-rise building: a full-scale study

  • Tecle, Amanuel;Bitsuamlak, Girma T.;Suskawang, Nakin;Chowdury, Arindam Gan;Fuez, Serge
    • Wind and Structures
    • /
    • v.16 no.4
    • /
    • pp.301-322
    • /
    • 2013
  • Recent major post-hurricane damage assessments in the United States have reported that the most common damages result from the loss of building roof coverings and subsequent wind driven rain intrusion. In an effort to look further into this problem, this paper presents a full-scale (Wall of Wind --WoW--) investigation of external and underneath wind pressures on roof tiles installed on a low-rise building model with various gable roofs. The optimal dimensions for the low-rise building that was tested with the WOW are 2.74 m (9 ft) long, 2.13 m (7 ft) wide, and 2.13 m (7 ft) high. The building is tested with interchangeable gable roofs at three different slopes (2:12; 5:12 and 7:12). The field tiles of these gable roofs are considered with three different tile profiles namely high (HP), medium (MP), and low profiles (LP) in accordance with Florida practice. For the ridge, two different types namely rounded and three-sided tiles were considered. The effect of weather block on the "underneath" pressure that develops between the tiles and the roof deck was also examined. These tests revealed the following: high pressure coefficients for the ridge tile compared to the field tiles, including those located at the corners; considerably higher pressure on the gable end ridge tiles compared to ridge tiles at the middle of the ridge line; and marginally higher pressure on barrel type tiles compared to the three-sided ridge tiles. The weather blocking of clay tiles, while useful in preventing water intrusion, it doesn't have significant effect on the wind loads of the field tiles. The case with weather blocking produces positive mean underneath pressure on the field tiles on the windward side thus reducing the net pressures on the windward surface of the roof. On the leeward side, reductions in net pressure to a non-significant level were observed due to the opposite direction of the internal and external pressures. The effect of the weather blocking on the external pressure on the ridge tile was negligible.

Evaluation of Organic Fouling Potential by Membrane Fouling Index (막오염 지수를 이용한 유기물에 의한 막오염 평가)

  • Kim, Hana;Park, Chanhyuk;Hong, Seungkwan
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.140-144
    • /
    • 2006
  • This study was performed to investigate the effect of organic characteristics and feed water solution chemistry on membrane fouling index such as Silt Density Index (SDI) and Modified Fouling Index (MFI). Specifically, Aldrich humic acids (AHA) and Suwannee river humic acids (SHA) were used in SDI/MFI experiments. Higher SDI values were observed with increasing organic concentration. AHA with larger molecular weight (MW) and SUVA (${\approx}UV_{254}/TOC$) resulted in higher SDI values, compared to SHA. The feed solution chemistry (i.e, pH, ionic strength, and hardness) also affects SDI values to some degree. In particular, SDI increased with increasing hardness ($Ca^{2+}$) concentration for AHA. Unlike SDI, the MFI developed on the basis of particle cake filtration theory, was not accurately assessed due to internal fouling by organics such as pore adsorption and subsequent pore blocking.

CHARACTERISTICS OF FIRE PROTECTIVE COATING THE TERNARY SOLUBLE SILICATE

  • Lee, Nae-Woo;Choi, Jae-Wook;Kim, Jeong-Hun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.120-129
    • /
    • 1997
  • The fire protective coating can reduce certain damages in case of fire, also conserve energy by thermal insulation and prevent corrosion and errosion in normal daily life by means of blocking thermal transfer, that were generally made of organic, inorganic and metallic materials as adiabatic coating. In case of inorganic material such as soluble silicate, it produces less toxic substances which are exposed to Ore, and have a plenty of raw material. Also inorganic thermal insulator is good in heat resistance. To develope such a excellent inorganic thermal insulator, the study of fire protective coating using the alkali silicate is necessary The principle of intumescence for alkali silicate is from rapid evolution of water in the coating material, the quantity of water in it is of course influenced on the degree of intumescence. The phenomenon of intumescence in ternary silicate is increased as the radius of ion is bigger, and this is caused by evolution of so many kinds of water. The individual degree of intumescence is ordered like this ; $K^+$ > $Na^+$ > $Li^+$ . The best protection effect is similarity found to intumescence of ternary silicate. The result of X-ray diffraction analysis indicates that $KHSi_2O_5$ is an important ingredient in K-silicate.

  • PDF