• Title/Summary/Keyword: Water and heat degradation

Search Result 66, Processing Time 0.021 seconds

Degradation of Microcystin-LR, Taste and Odor, and Natural Organic Matter by UV-LED Based Advanced Oxidation Processes in Synthetic and Natural Water Source (UV-LED기반 고도산화공정을 이용한 수중 마이크로시스틴-LR, 이취미 물질, 자연유기물 분해)

  • Yang, Boram;Park, Jeong-Ann;Nam, Hye-Lim;Jung, Sung-Mok;Choi, Jae-Woo;Park, Hee-Deung;Lee, Sang-Hyup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.5
    • /
    • pp.246-254
    • /
    • 2017
  • Microcystin-LR (MC-LR) is one of most abundant microcystins, and is derived from blue-green algae bloom. Advanced oxidation processes (AOPs) are effective process when high concentrations of MC-LR are released into a drinking water treatment system from surface water. In particular, UV-based AOPs such as UV, $UV/H_2O_2$, $UV/O_3$ and $UV/TiO_2$ have been studied for the removal of MC-LR. In this study, UV-LED was applied for the degradation of MC-LR because UV lamps have demonstrated some weaknesses, such as frequent replacements; that generate mercury waste and high heat loss. Degradation efficiencies of the MC-LR (initial conc. = $100{\mu}g/L$) were 30% and 95.9% using LED-L (280 nm, $0.024mW/cm^2$) and LED-H (280 nm, $2.18mW/cm^2$), respectively. Aromatic compounds of natural organic matter changed to aliphatic compounds under the LED-H irradiation by LC-OCD analysis. For application to raw water, the Nak-dong River was sampled during summer when blue-green algae were heavy bloom in 2016. The concentration of extracellular and total MC-LR, geosmin and 2-MIB slightly decreased by increasing the LED-L irradiation; however, the removal of MC-LR by UV-LED (${\lambda}=280nm$) was insufficient. Thus, advanced UV-LED technology or the addition of oxidants with UV-LED is required to obtain better degradation efficiency of MC-LR.

Feasibility Study of Salt Farm and Solar Power Paraell System (염전 병행 태양광 발전 시스템 타당성 검토를 위한 기초연구)

  • Kang, Seong-hyun;Kim, Bong-suck;GIM, Geun Ho;Park, Jongsung;Kim, Deok Sung;Lim, Cheolhyun
    • Current Photovoltaic Research
    • /
    • v.9 no.1
    • /
    • pp.17-21
    • /
    • 2021
  • In this study, the effect of water level and temperature on the power generation was investigated in a water tank with an aquavoltaic PV module to perform feasibility research for the development of salt farm aquavoltaic system. The silicon solar cell attached to the bottom of each water tank is a 1-cell mini module, and the underwater effects of the crystal phase (19.0~19.9% of single- & 17.9~19.9% of poly-crystalline) of the PV module were investigated, and power generation characteristics for water level (0~10 cm) and temperature (10~40℃) were analyzed. The deterioration coefficients according to the water level and temperature of each single- and poly-crystalline module were investigated at very similar levels such as, -2.01 %/cm and -2.02 %/cm, -0.50 %/℃ and -0.48 %/℃, respectively. Therefore, in salt farm aquavoltaic system, water levels need to maintain as low as possible, and heat-induced degradation is similar to those shown in general land, and no factors have been found to be affected by the underwater environment depending on the determination.

A Model-Based Fault Detection and Diagnosis Methodology for Cooling Tower

  • Ahn, Byung-Cheon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.3
    • /
    • pp.63-71
    • /
    • 2001
  • This paper presents a model-based method for detecting and diagnosing some faults in the cooling tower of healing, ventilating, and air-conditioning systems. A simple model for the cooling tower is employed. Faults in cooling tower operation are detected through the deviations in the values of system characteristic parameters such as the heat transfer coefficient-area product, the tower approach, the tower effectiveness, and fan power. Three distinct faults are considered: cooling tower inlet water temperature sensor fault, cooling tower pump fault, and cooling tower fan fault. As a result, most values of the system characteristics parameter variations due to a fault are much higher or lower than the values without faults. This allows the faults in a cooling tower to be detected easily using above methods. The diagnostic rules for the faults were also developed through investigating the changes in the different parameter due to each faults.

  • PDF

Characteristics of Sapphire Wafers Polishing Depending on Ion Conductivity of Silica Sol (실리카졸의 이온전도도 변화에 따른 사파이어 웨이퍼의 연마 특성)

  • Na, Ho Seong;Cho, Gyeong Sook;Lee, Dong-Hyun;Park, Min-Gyeong;Kim, Dae Sung;Lee, Seung-Ho
    • Korean Journal of Materials Research
    • /
    • v.25 no.1
    • /
    • pp.21-26
    • /
    • 2015
  • CMP(Chemical Mechanical Polishing) Processes have been used to improve the planarization of the wafers in the semiconductor manufacturing industry. Polishing performance of CMP Process is determined by the chemical reaction of the liquid sol containing abrasive, pressure of the head portion and rotational speed of the polishing pad. However, frictional heat generated during the CMP process causes agglomeration of the particles and the liquidity degradation, resulting in a non-uniform of surface roughness and surface scratch. To overcome this chronic problem, herein, we introduced NaCl salt as an additive into silica sol for elimination the generation of frictional heat. The added NaCl reduced the zata potential of silica sol and increased the contact surface of silica particles onto the sapphire wafer, resulting in increase of the removal rate up to 17 %. Additionally, it seems that the silica particles adsorbed on the polishing pad decreased the contact area between the sapphire water and polishing pad, which suppressed the generation of frictional heat.

Study on the dyestuff for acceration solar evaporation (함수의 천일증발촉진성 색소에 관한 시험)

  • 장판섭
    • YAKHAK HOEJI
    • /
    • v.3 no.1
    • /
    • pp.26-34
    • /
    • 1957
  • The solar evaporation method is one of the most important and popular salt manufecturing method in Korea. The rate of evaporation of sea water depends on a complex climate factors. Of these factors, the most important is solar radiation and in particular the extent to which it is absorbed in the brine. By the addition of suitable dyestuff, a further increase in absorption is obtained and can result in all the radiation entering the brine being made available as heat. "Solivap Green", one of several dyestuffs which have been suggested for accelerating solar evaporation, was tested in this experiment. The results of the experiment. 1. Increase the evaporation rate of brine up to 20-25%. 2. Elevate the temperature of brine 2-$4^{\circ}C$. higher than that of brine adding no dyestuff. 3. Optimum dyestuff concentration is 25-30 mg/L and allowable maximum concentration can not exceeded 1000 mg/$m^2$ (50 mg/L). 4. Addition of dyestuff does not cause the degradation of salt produced. 5. A conversion table which indicates the concentrations for various depths of brine was prepared for engineering purpose. 6. Absorption spectrum of the dyestuff was studies, but toxicological and structural studies for the dyestuff have not been done in this experiment.

  • PDF

Analysis of Non-point Pollution Source Reduction by Permeable Pavement (투수성 포장에 의한 비점오염원 저감 효과 분석)

  • Koo, Young Min;Kim, Young Do;Park, Jae Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.1
    • /
    • pp.49-62
    • /
    • 2014
  • As the Urban area grows and more land is developed both within the city and in surrounding areas, hydrologic functions of the natural water cycle are altered. Urbanization creates impervious areas that negatively impact stormwater runoff characteristics. these changes to the natural hydrologic cycle result in the increased flooding, decreased groundwater recharge, increased urban heat island effects. Finally, the land use and other activities result in accumulation and washoff of pollutants from surface, resulting in water quality degradation. Therefore, in this study, evaluating and quantitative analysis of the percolation effect through infiltration experiment of permeable pavement, which is one of the ways that can reduce the problem of the dry stream. Also the SWMM model is used to study the effect of the hydrologic cycle for permeable pavement block contribution.

Improving the effectiveness of a photovoltaic system by water impinging jet on the surface of photovoltaic cells (셀 표면의 충돌제트를 이용한 태양광발전 시스템 효율향상에 관한 연구)

  • Yoo, Sang-Phil;Jin, Joo-Seok;Kim, Hyuk-Kyun;Kim, Yi-Hyun;Jeong, Seong-Dae;Seo, Yong-Seo;Jeong, Nam-Jo
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.241-244
    • /
    • 2009
  • This study is focused on the improving effectiveness of a photovoltaic system. The characteristic of crystalline silicon solar cells, that 0.5% reduction in generating power is occurred by increasing temperature $1^{\circ}C$ of module. Typically, average solar generating power is higher spring and fall than summer. Degradation phenomena shall shorten the life of the module when the temperature of modules is $70^{\circ}C$. Decreasing temperature 40degree of the module and increasing the solar power 20% was presented using the water impinging jet method on the surface of photovoltaic cells. It is shown that Impinging jet have an effected on heat and deliver effective substance from the area in which the injection is effective.

  • PDF

Effects of Heat Treatment of Three Animal by-products on Ruminal Degradation Characteristics and Intestinal Availability of Crude Protein (동물성 부산물 사료 세 종류에 대한 열처리가 조단백질의 반추위내 분해특성 및 하부장기내 이용성에 미치는 영향)

  • Moon, Y.H.;Lee, S.C.;Kim, B.K.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.105-112
    • /
    • 2002
  • In order to investigate the effects of heat treatment of three animal by-products(feather meal, tallow meal, viscera meal) on in situ ruminal degradation characteristics and gastrointestinal availability of dietary crude protein(CP), three ruminally and duodenally cannulated dry Holstein cows were employed. Cows were fed a diet containing 60% concentrate and 40% orchard grass hay, and had free access to water and mineral block. Experimental feeds were processed for 4 hr at 149$^{\circ}C$ in a forced-air oven, and were passed through a 1-mm screen. Degradation kinetics of feed protein in the rumen were fitted to an exponential type model, and intestinal availability was estimated by the mobile nylon bag technique. Effective CP degradabilities in the rumen for feather meal, tallow meal and viscera meal were 30.2%, 75.0% and 56.4% at 5% passage rate per hour(k=0.05), respectively. In addition, heat treatment increased effective ruminal CP degradability on feather meal and viscera meal treatments, whereas decreased in tallow meal treatment(P$<$0.05). Gastrointestinal CP disappearances of feather meal, tallow meal and viscera meal were 56.2%, 18.6%, and 37.9%, respectively. In addition, heat treatment decreased the gastrointestinal CP disappearance on feather meal and viscera meal treatment, but increased in tallow meal treatment(P$<$0.05). Intestinal availability of rumen undegradable protein(A-UDP) was 80.4% for feather meal, 83.8% for tallow meal and 86.9% for viscera meal. In addition, heat treatment increased A-UDP on feather meal and tallow meal treatment, 94.0% and 91.3%, respectively, but decreased on viscera meal treatment, 76.5%(P$<$0.05).

Adsorption Characteristics of Natural Powdered Oil Absorbent for Marine Oil Pollution (해양오염제거용 천연분말상 유흉착재의 흡착 특성에 관한 연구)

  • 김인수;이진석;김동근;고성정
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.7 no.1
    • /
    • pp.7-14
    • /
    • 2001
  • The amount of petroleum consumption has been Increased according to the industrialization and It leads to the increase of the possibility of marine oil pollution. In Korea, some countermeasures including oil skimmer, gelling agent and herding agent of oil have been used for the remediation of the pollution. However, most of them have lets of shortcomings in the application under in-situ condition, because they are sensitive to the situation such as geographical feature, the wind and the tide. In reported literature, the natural powdered oil absorbent which is made of peat moss is an effective mean to clean spilled oil from lake or coast. However, the peat moss is a natural resource which is only Produced from a specific cold weather are like Canada. This indicates that the alternative materials which is readily obtained from everywhere are needed for powdered oil absorbent. Therefore. in the study, same natural materials including pine leaves and straw are tested as the alternative materials for the absorbent. The raw materials were dried and treated by heat at various temperature during several Periods and then. shattered by a grain cracking machine. The oil sorption capacity of the prepared materials was compared according to the methods of heat treatment and their sizes. The proportion of hydrogen cyanide to combustion of the absorbents was measured to confirm their final disposal methods. The biodegradability test of the absorbents was carried our to evaluate possibility of a side pollution in the coast. In was found that the heat treatment of pine leaves enhanced the capacity of oil sorption and decreased the water sorption. The maximum oil sorption was observed for the material treated at 18$0^{\circ}C$for 60 min. The amount of hydrogen cyanide from the combustion were 0.09ml/g, 0.07ml/g for pine leaves and straw respectively meaning that the final disposal by combustion might be feasible. The amount or organic carbon extracted from pine leaves during 7 days was up to 0.015g organic carbon from one gram of pine leaves. but the degradation was as fast as for glucose. It is concluded that the pine leaves can be served as a good raw material for the powdered oil absorbent like peat moss.

  • PDF

COMPUTATION OF LAMINAR NATURAL CONVECTION OF NANOFLUID USING BUONGIORNO'S NONHOMOGENEOUS MODEL (Buongiorno의 비균질 모델을 사용한 나노유체의 층류 자연대류 해석)

  • Choi, S.K.;Kim, S.O.;Lee, T.H.
    • Journal of computational fluids engineering
    • /
    • v.18 no.4
    • /
    • pp.25-34
    • /
    • 2013
  • A numerical study of a laminar natural convection of the CuO-water nanofluid in a square cavity using the Buongiorno's nonhomogeneous model is presented. All the governing equations including the volume fraction equation are discretized on a cell-centered, non-uniform grid employing the finite-volume method with a primitive variable formulation. Calculations are performed over a range of Rayleigh numbers and volume fractions of the nanopartile. From the computed results, it is shown that both the homogeneous and nonhomogeneous models predict the deterioration of the natural convection heat transfer well with an increase of the volume fraction of nanoparticle at the same Rayleigh number, which was observed in the previous experimental studies. It is also shown that the differences in the computed results of the average Nusselt number at the wall between the homogeneous and nonhomogeneous models are very small, and this indicates that the slip mechanism of the Brown diffusion and thermophoresis effects are negligible in the laminar natural convection of the nanofluid. The degradation of the heat transfer with an increase of the volume fraction of the nanoparticle in the natural convection of nanofluid is due to the increase of the viscosity and the decrease of the thermal expansion coefficient and the specific heat. It is clarified in the present study that the previous controversies between the numerical and experimental studies are owing to the different definitions of the Nusselt number.